The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, elec...The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, electron backscatter diffraction(EBSD) and uniaxial tensile test. The Mg-Y alloys exhibited a weakened basal texture before the ECAP, and the texture was further weakened with the max basal poles dispersed along ~45° between the extrusion direction and the transverse direction after the ECAP. The Mg-5 Y alloys always exhibited a finer grain size comparing to that of Mg-1 Y for the same ECAP process. With a proper ECAP process, both the strength and elongation of Mg-5 Y alloy could be improved simultaneously after the ECAP, i.e., the yield strength(273.9 ± 1.2 MPa), ultimate strength(306.4 ± 3.0 MPa),and elongation(23.9 ± 1.0%) were increased by 10%, 6%, and 72%, respectively, comparing to that before the ECAP. This was considered to be arose from the combined effects of grain refinement, significant improved microstructure homogeneity and solid solution hardening.In addition, it was found that Mg-Y alloy with better comprehensive properties could be obtained by the decreasing-temperature ECAP processes. The yield strength-grain size relationship could be well described by the Hall-Petch relation for all the ECAPed Mg-Y alloys,which was consistent with that the texture changes did not significantly affect the average Schmid factors of basal, prismatic and pyramidal slips for both Mg-Y alloys.展开更多
The effect of pre-straining on the structure and formation mechanism of precipitates in an Al−Mg−Si−Cu alloy was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission ele...The effect of pre-straining on the structure and formation mechanism of precipitates in an Al−Mg−Si−Cu alloy was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Elongated and string-like precipitates are formed along the dislocations in the pre-strained Al−Mg−Si−Cu alloy.The precipitates formed along the dislocations exhibit three features:non-periodic atomic arrangement within the precipitate;Cu segregation occurring at the precipitate/α(Al)interface;different orientations presented in one individual precipitate.Four different formation mechanisms of these heterogeneous precipitates were proposed as follows:elongated precipitates are formed independently in the dislocation;string-like precipitates are formed directly along the dislocations;different precipitates encounter to form string-like precipitates;precipitates are connected by other phases or solute enrichment regions.These different formation mechanisms are responsible for forming different atomic structures and morphologies of precipitates.展开更多
To investigate potential strengthening approaches,multi-layered zirconium–titanium(Zr-Ti)composites were fabricated by hot-rolling bonding and annealing.The microstructures of these composites were characterized usin...To investigate potential strengthening approaches,multi-layered zirconium–titanium(Zr-Ti)composites were fabricated by hot-rolling bonding and annealing.The microstructures of these composites were characterized using scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)and electron backscatter diffractometry(EBSD).Their mechanical properties were evaluated by uniaxial tension and compression measurements.It was found that the fabricated Zr–Ti composites are composed of alternating Zr/diffusion/Ti layers,and chemical compositions of Zr and Ti showed a gradient distribution in the diffusion layer.Compared with as-rolled samples,annealing can strengthen the layered gradient Zr–Ti composite,and this is mainly caused by solid-solution strengthening and microstructure refinement-induced strengthening.Compared with the raw materials,a synergistic improvement of strength and ductility is achieved in the Zr–Ti composite as a result of the layered gradient microstructure.Tension–compression asymmetry is observed in the Zr–Ti composites,which may be attributed to twinning and microvoids induced by unbalanced diffusion.展开更多
Mg-RE(magnesium-rare earth)alloys exhibit pronounced in-plane anisotropy of mechanical response under quasi-static monotonic loading resulting from the RE texture,as extensively reported.In this work,an obvious in-pla...Mg-RE(magnesium-rare earth)alloys exhibit pronounced in-plane anisotropy of mechanical response under quasi-static monotonic loading resulting from the RE texture,as extensively reported.In this work,an obvious in-plane anisotropy of cyclic deformation behavior was observed in an extruded Mg-3Y alloy sheet during strain-controlled tension-compression low-cycle fatigue(LCF)at room temperature.The extrusion direction(ED)samples displayed better fatigue resistance with almost symmetrical hysteresis loops and longer fatigue life compared with the transverse direction(TD)samples.The influences of texture on the deformation modes,cracking modes,and mechanical behavior of Mg-Y alloy sheets under cyclic loading were studied quantitatively and statistically.The activation of various slip/twinning-detwinning systems was measured at desired fatigue stages via EBSD observations together with in-grain misorientation axes(IGMA)analysis.The results indicate that the activation of deformation modes in the TD sample was featured by the cyclic transition,i.e.,prismatic slip(at the tensile interval)→{10–12}tension twinning(at the compressive reversal)→detwinning+prismatic slip(at the re-tensile reversal).In the case of the ED sample,the cyclic deformation was dominated by the basal slip throughout the fatigue life.For cracking modes,intergranular cracking and persistent slip bands(PSB)cracking were the primary cracking modes in the ED sample while the TD sample showed a high tendency of{10–12}tension twinning cracking(TTW cracking).The underlying mechanisms influencing the activation of various slip/twinning-detwinning systems,as well as cracking modes and cyclic mechanical behavior,were discussed.展开更多
Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental p...Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental plate with different porosities was compared in this study. The X-ray computed tomography(XCT) was utilized to characterize the size, number density and spatial distribution of porosity inside various samples, and the fracture surface of fatigued specimens was compared by using scanning electron microscope(SEM). The results showed that the fatigue cracks prefer to initiate from constituent particles in the commercial alloy. Whereas the micro porosity is the predominant site for crack nucleation and subsequent failure in the experimental one. The presence of micro porosity in experimental7050-T7451 thick plate may reduce the fatigue life by an order of magnitude or more compared with the defect-free alloy. The pores close to sample surface are the main fatigue crack initiation site, among which larger and deeper pore leads to a shorter fatigue life. The crack initiation is also affected by the pore geometry and direction. Besides, the overall porosity inside the bulk can affect the crack propagation during fatigue tests.展开更多
The effect of quenching rate on the aging precipitation behavior and properties of Al-Zn-Mg-Cu-Zr-Er alloy was investigated.The scanning electron microscopy,transmission electron microscopy,and atom probe tomography w...The effect of quenching rate on the aging precipitation behavior and properties of Al-Zn-Mg-Cu-Zr-Er alloy was investigated.The scanning electron microscopy,transmission electron microscopy,and atom probe tomography were used to study the characteristics of clusters and precipitates in the alloy.The quench-inducedηphase and a large number of clusters are formed in the air-cooled alloy with the slowest cooling rate,which contributes to an increment of hardness by 24%(HV 26)compared with that of the water-quenched one.However,the aging hardening response speed and peak-aged hardness of the alloy increase with the increase of quenching rate.Meanwhile,the water-quenched alloy after peak aging also has the highest strength,elongation,and corrosion resistance,which is due to the high driving force and increased number density of aging precipitates,and the narrowed precipitate free zones.展开更多
The hot deformation and dynamic recrystallization(DRX)behaviors of 7055 aluminum alloy were studied at temperatures of 390−470℃ and strain rates of 0.01−1 s^(−1).A low DRX fraction between 1% and 13% was observed by ...The hot deformation and dynamic recrystallization(DRX)behaviors of 7055 aluminum alloy were studied at temperatures of 390−470℃ and strain rates of 0.01−1 s^(−1).A low DRX fraction between 1% and 13% was observed by using EBSD technique.A modified JMAK-type DRX model was proposed for such low DRX fraction problems.The model was used together with commercial FEM software DEFORM-3D to simulate the hot compression of 7055 aluminum alloy.There was a good agreement between experimental and predicted DRX fractions and grain size with an average absolute relative error(AARE)of 13.7% and 6.3%,respectively.In order to further verify the validity of the proposed model,the model was also used to simulate DRX in industrial hot rolling of 7055 aluminum alloys.The results showed that the distribution of DRX fraction was inhomogeneous,and agreed with experimental observations.展开更多
A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensi...A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensile properties of the alloy were investigated. The results indicate that the microstructure of centrifugal cast alloy consists of equiaxed grains and network-like eutectic structure present at grain boundaries. The ring-rolled alloy exhibits a characteristic bimodal microstructure composed of fine dynamic recrystallized(DRXed) grains with weak basal texture and coarse un-DRXed grains with strong basal texture, along with the presence of LPSO phase. With increasing amount of accumulative ring-rolling reduction, the coarse un-DRXed grains are refined via the formation of increasing amount of fine DRXed grains. Meanwhile, the dynamic precipitation of Mg5 RE phase occurs, generating a dispersion strengthening effect. A superior combination of strength and ductility is achieved in the ring-rolled alloy after an accumulative rolling reduction of 80%. The tensile strength of this ring-rolled alloy after peak aging is further enhanced, reaching 511 MPa, while keeping a reasonable ductility. The salient strengthening mechanisms identified include the grain boundary strengthening of fine DRXed grains, dispersion strengthening of dynamic precipitated Mg;RE phase, short fiber strengthening of LPSO lamellae/rods, and precipitation strengthening of nano-sized prismatic β precipitates and basal γ precipitates.展开更多
Hardness tests and transmission electron microscopy were used to investigate the strategy of tailoring the phase fraction of precipitates in an Al-Zn-Mg-Cu alloy strengthened by T’ and η’ phases. Different phase fr...Hardness tests and transmission electron microscopy were used to investigate the strategy of tailoring the phase fraction of precipitates in an Al-Zn-Mg-Cu alloy strengthened by T’ and η’ phases. Different phase fractions of T’ and η’ phases are presented in samples subjected to either single or two stages of ageing treatments at 120 and 150 ℃.For both types of ageing, the precipitation of η’ phase is found to be promoted by ageing at lower temperature and its phase fraction increases with prolonging ageing time at 120 ℃;whereas the phase fractions of T’ and η’ phases almost remain constant during ageing at 150 ℃. Besides, the strain fields produced by T’ and η’ phases were analyzed by using the geometric phase analysis technique, and on a macroscale the contributions of T’ and η’ phases to precipitation strengthening have been quantitatively predicted by combining the size, phase fraction and number density of precipitates.展开更多
The influence of Y content on the grain-scale twinning behavior in extruded Mg−xY(x=0.5,1,5,wt.%)sheets under uniaxial tension and compression along the extruded direction was statistically investigated.An automatic t...The influence of Y content on the grain-scale twinning behavior in extruded Mg−xY(x=0.5,1,5,wt.%)sheets under uniaxial tension and compression along the extruded direction was statistically investigated.An automatic twin variant analysis was employed,based on large data sets obtained by electron backscatter diffraction(EBSD),including 2691 grains with 977 twins.The{1012}tension twinning(TTW)dominance and prevailing anomalous twinning behavior(Schmid factor(m)<0)under both tension and compression were found.The anomalous twinning behavior was more pronounced as Y content increased under tensile loading,indicating a promoted stochasticity of twin variant selection for more concentrated Mg−Y alloys.However,the trend for the Y-content dependent anomalous twinning behavior was opposite in compression.The fractions of the anomalous TTWs were found to be well correlated with the maximum Schmid factor(m_(max))values of basal slip and prismatic slip in the corresponding parent grains for compression and tension,respectively,indicating that twinning and dislocation slip might be closely related in the present Mg−Y alloys.展开更多
Al-Zn-Mg-Cu alloys with different major strengthening precipitates are subjected to a novel combinatorial pre-treatment,including natural ageing and pre-stretching.The evolution of hardness and microstructure during t...Al-Zn-Mg-Cu alloys with different major strengthening precipitates are subjected to a novel combinatorial pre-treatment,including natural ageing and pre-stretching.The evolution of hardness and microstructure during the combinatorial pre-treatment and subsequent artificial ageing has been investigated.The results reveal that the growth rate of hardness in alloy B(Zn/Mg=10.0)is much higher than that of alloy A(Zn/Mg=1.5)due to the fast precipitation kinetics ofηphase compared with T phase.Both GP I zones and dislocations introduced by the combinatorial pre-treatment can act as heterogeneous nucleation sites for precipitation,resulting in more precipitates and higher hardness than pre-stretched alloys A and B.Dislocations distribute uniformly in combinatorial pre-treated alloys owing to the existence of GP I zones and dislocations,which promote the precipitation and refine the precipitate size.Moreover,these alloys with distinct pre-stretching(2%–10%)show similar precipitation behavior and peak hardness,and it indicates that the dislocation-induced precipitation will not be affected by the density of dislocations when plenty of GP I zones pre-exist.展开更多
AZ31/Mg3Y composites with a layer thickness of 100-200μm were fabricated by accumulated rolling bonding(ARB),which was followed by diffusion annealing at 300℃ for 0-32 h.An interface layer,containing numerous Al-Y p...AZ31/Mg3Y composites with a layer thickness of 100-200μm were fabricated by accumulated rolling bonding(ARB),which was followed by diffusion annealing at 300℃ for 0-32 h.An interface layer,containing numerous Al-Y precipitates,is formed in the Mg3Y layer that is adjacent to the interface as a result of Al diffusing from the AZ31 layers into the Mg3Y layers.The thickness of the interface layer gets increased and more precipitates are formed in the interface layer with the extension of the annealing time.The microhardness of the AZ31 and Mg3Y layer decreases firstly and then reaches a stable value,while the microhardness of the interface layer increases gradually with the extension of the annealing time.The AZ31/Mg3Y composites exhibit equivalent strength but increased ductility after diffusion annealing,in comparison to the as-rolled AZ31/Mg3Y composite.In addition,the AZ31/Mg3Y composites after annealing always present higher strength and ductility than AZ31/AZ31 composite,which was fabricated by the same process as that for the AZ31/Mg3Y composites.Hetero-deformation induced strengthening also plays an important role in the excellent strength and ductility of the annealed AZ31/Mg3Y composite.This study can provide a direction for improving the plasticity and strength of magnesium alloys synergistically.展开更多
The effects of Zn/Mg ratios on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys aged at 150℃have been investigated by using tensile tests,optical metallography,scanning electron microscopy,transmission ...The effects of Zn/Mg ratios on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys aged at 150℃have been investigated by using tensile tests,optical metallography,scanning electron microscopy,transmission electron microscopy and atom probe tomography analyses.With increasing Zn/Mg ratios,the ageing process is significantly accelerated and the time to peak ageing is reduced.T’phase predominates in alloys of lower Zn/Mg ratios whileη’phase predominates in alloys with a Zn/Mg ratio over 2.86.Co-existence of T’phase andη’phase with a large number density is beneficial to the high strength of alloys.Such precipitates together with narrow precipitate free zones cause a brittle intergranular fracture.A strength model has been established to predict the co-strengthening effect of T’phase andη’phase in Al-Zn-Mg-Cu alloys,including the factors of the grain boundary,solid solution and precipitation.展开更多
The influence of Zn on the strain hardening of as-extruded Mg-x Zn(x = 1, 2, 3 and 4 wt%) magnesium alloys was investigated using uniaxial tensile tests at 10^(-3)s^(-1) at room temperature. The strain hardening rate,...The influence of Zn on the strain hardening of as-extruded Mg-x Zn(x = 1, 2, 3 and 4 wt%) magnesium alloys was investigated using uniaxial tensile tests at 10^(-3)s^(-1) at room temperature. The strain hardening rate,the strain hardening exponent and the hardening capacity were obtained from true plastic stress-strain curves. There were almost no second phases in the as-extruded Mg-Zn magnesium alloys. Average grain sizes of the four as-extruded alloys were about 17.8 μm. With increasing Zn content from 1 to 4 wt%, the strain hardening rate increased from 2850 MPa to 6810 MPa at(б-б_(0.2)) = 60 MPa, the strain hardening exponent n increased from 0.160 to 0.203, and the hardening capacity, Hc increased from 1.17 to 2.34.The difference in strain hardening response of these Mg-Zn alloys might be mainly caused by weaker basal texture and more solute atoms in the α-Mg matrix with higher Zn content.展开更多
Excellent comprehensive mechanical properties including good formability,high strength and high ductility are prior demands for Al-Mg-Si-Cu alloys.This study utilizes calculation of phase diagram(CALPHAD)to simplify t...Excellent comprehensive mechanical properties including good formability,high strength and high ductility are prior demands for Al-Mg-Si-Cu alloys.This study utilizes calculation of phase diagram(CALPHAD)to simplify the alloy design and meet these demands.Specifically,CALPHAD was used to finely tune the Mg/Si atomic ratio in solid solution and accurately control the type and content of second phases,especially to avoid the formation of the harmful constituent phaseβ-Al Fe Si.Constituents and dispersoids of only-Al Fe Mn Si phase were found in the alloy prepared.An optimized microstructure with fine grains,micro scale constituents,densely distributed submicron scale dispersoids and extremely dense nano precipitates provides effective impediment to dislocation gliding and induces transgranular fracture.Therefore,the designed alloy has better comprehensive mechanical properties than other 6 xxx series aluminum alloys,including excellent formability,strength and ductility.The low T4P strength of 149 MPa as well as the high elongation of 26.1%implies the alloy’s applicability to automobile body panel forming.The yield strength was rapidly improved from 149 MPa to 277 MPa during the paint bake ageing,because the number density of precipitates is twice as high as that of some other 6xxx alloys.Meanwhile,the elongation was kept at a high level of 20.0%.展开更多
The deformation mechanism of CoCrNi alloy with high density of annealing twins was studied by in situ transmission electron microscopy. Dislocation transmission and reflection at the twin boundary were observed during...The deformation mechanism of CoCrNi alloy with high density of annealing twins was studied by in situ transmission electron microscopy. Dislocation transmission and reflection at the twin boundary were observed during in situ loading. We characterized these reaction processes by combining TEM, dislocation theory and crystallography of twin. Twin boundary not only strengthens the material by impeding the motion of dislocation, but also acts as dislocation source to produce large of slip bands. These processes generate large of slip bands to accommodate the plastic deformation or strengthening material.展开更多
It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have du...It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have dual effect on the coarsening of Al3Sc nanoprecipitates.On the one hand,the Cu atoms with high diffusivity tend to accelerate the Al3Sc coarsening,which results from the Cu-promoted Sc diffusion.On the other hand,some Cu atoms will segregate at the Al3Sc/matrix interface,which further stabilizes the Al3Sc nanoprecipitates by reducing the interfacial energy.Competition between these two effects is tailored by temperature,which rationalizes the experimental findings that the coarsening kinetics of Al3Sc nanoprecipitate is greatly boosted at 300℃-overaging while significantly suppressed at 400℃-overaging.展开更多
Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are gener...Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are generated after cold rolling and are mainly distributed inside{1012}twins.After aging treatment,the formation of single-layer and three-layer Bi atom segregation in the vicinity of I_(1)fault are clearly observed.Bi segregation also occurs at the 1/6<2203>bounding Frank partial dislocation cores.The segregation behaviors in I_(1)fault and Frank dislocations are discussed and rationalized using first-principles calculations.展开更多
Conventional wrought Mg alloys,such as AZ31 and ZK60 rolled plates,usually exhibit significantly low tensile yield strength in the thickness direction.This can be attributed to the high activity of{10-12}tension twinn...Conventional wrought Mg alloys,such as AZ31 and ZK60 rolled plates,usually exhibit significantly low tensile yield strength in the thickness direction.This can be attributed to the high activity of{10-12}tension twinning due to the strong basal texture(<0001>//ND,normal direction).In this work,the tensile yield strength in the ND of the as-rolled(AR)AZ31 plate increased from 50 to 150 MPa(increased by 200%)via simple processing,i.e.,pre-tension and rolling-annealing(PTRA)treatment.The strong basal texture(<0001>//ND)of the AR plate was changed into a weakened fiber texture(<0001>⊥ND).The evolution of microstructures during PTRA treatment and the activated deformation modes during uniaxial tension were studied quantitatively and statistically by the means of intergranular misorientation(IM)and in-grain misorientation axes(IGMA)analysis.The results indicate that various twin variants,as well as{10-12}-{10-12}secondary twins,were activated during pre-tension and rolling,and most residual matrix was consumed by twins after annealing.The dominated deformation modes in tension changed from{10-12}tension twinning(the AR sample)to prismatic slip(the PTRA sample)in the early tensile deformation.The underlying formation mechanism of the fiber texture and corresponding strengthening mechanism were discussed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51401172 and 51601003)Sichuan Science and Technology Program(2019YJ0238)+1 种基金Fundamental Research Funds for the Central Universities(2682020ZT114)open funding of International Joint Laboratory for Light Alloys(MOE),Chongqing University。
文摘The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, electron backscatter diffraction(EBSD) and uniaxial tensile test. The Mg-Y alloys exhibited a weakened basal texture before the ECAP, and the texture was further weakened with the max basal poles dispersed along ~45° between the extrusion direction and the transverse direction after the ECAP. The Mg-5 Y alloys always exhibited a finer grain size comparing to that of Mg-1 Y for the same ECAP process. With a proper ECAP process, both the strength and elongation of Mg-5 Y alloy could be improved simultaneously after the ECAP, i.e., the yield strength(273.9 ± 1.2 MPa), ultimate strength(306.4 ± 3.0 MPa),and elongation(23.9 ± 1.0%) were increased by 10%, 6%, and 72%, respectively, comparing to that before the ECAP. This was considered to be arose from the combined effects of grain refinement, significant improved microstructure homogeneity and solid solution hardening.In addition, it was found that Mg-Y alloy with better comprehensive properties could be obtained by the decreasing-temperature ECAP processes. The yield strength-grain size relationship could be well described by the Hall-Petch relation for all the ECAPed Mg-Y alloys,which was consistent with that the texture changes did not significantly affect the average Schmid factors of basal, prismatic and pyramidal slips for both Mg-Y alloys.
基金the Natural Science Foundation of Jiangsu Province,China(No.BK20201035)the Talent Research Fund in Nanjing Institute of Technology,China(No.YKJ201957)+1 种基金the National Natural Science Foundation of China(Nos.51871035,52001159)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Nos.20KJB430016,20KJB430012).
文摘The effect of pre-straining on the structure and formation mechanism of precipitates in an Al−Mg−Si−Cu alloy was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Elongated and string-like precipitates are formed along the dislocations in the pre-strained Al−Mg−Si−Cu alloy.The precipitates formed along the dislocations exhibit three features:non-periodic atomic arrangement within the precipitate;Cu segregation occurring at the precipitate/α(Al)interface;different orientations presented in one individual precipitate.Four different formation mechanisms of these heterogeneous precipitates were proposed as follows:elongated precipitates are formed independently in the dislocation;string-like precipitates are formed directly along the dislocations;different precipitates encounter to form string-like precipitates;precipitates are connected by other phases or solute enrichment regions.These different formation mechanisms are responsible for forming different atomic structures and morphologies of precipitates.
基金financially supported by the National Natural Science Foundation of China(No.51971041)the Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxm X0234)。
文摘To investigate potential strengthening approaches,multi-layered zirconium–titanium(Zr-Ti)composites were fabricated by hot-rolling bonding and annealing.The microstructures of these composites were characterized using scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)and electron backscatter diffractometry(EBSD).Their mechanical properties were evaluated by uniaxial tension and compression measurements.It was found that the fabricated Zr–Ti composites are composed of alternating Zr/diffusion/Ti layers,and chemical compositions of Zr and Ti showed a gradient distribution in the diffusion layer.Compared with as-rolled samples,annealing can strengthen the layered gradient Zr–Ti composite,and this is mainly caused by solid-solution strengthening and microstructure refinement-induced strengthening.Compared with the raw materials,a synergistic improvement of strength and ductility is achieved in the Zr–Ti composite as a result of the layered gradient microstructure.Tension–compression asymmetry is observed in the Zr–Ti composites,which may be attributed to twinning and microvoids induced by unbalanced diffusion.
基金co-supported by the National Natural Science Foundation of China(51575068 and 51501023)the State Key Research and Development Program of MOST,China(2016627 YFB0701204)+3 种基金Project No.2020CDJDPT001 supported by the Fundamental Research Funds for the Central UniversitiesChongqing Natural Science Foundation,No.cstc2018jcyj AX0364the“111” Project(B16007)by the Ministry of Education for financial supportChongqing Natural Science Foundation,No.cstc2021jcyjmsxmX0699。
文摘Mg-RE(magnesium-rare earth)alloys exhibit pronounced in-plane anisotropy of mechanical response under quasi-static monotonic loading resulting from the RE texture,as extensively reported.In this work,an obvious in-plane anisotropy of cyclic deformation behavior was observed in an extruded Mg-3Y alloy sheet during strain-controlled tension-compression low-cycle fatigue(LCF)at room temperature.The extrusion direction(ED)samples displayed better fatigue resistance with almost symmetrical hysteresis loops and longer fatigue life compared with the transverse direction(TD)samples.The influences of texture on the deformation modes,cracking modes,and mechanical behavior of Mg-Y alloy sheets under cyclic loading were studied quantitatively and statistically.The activation of various slip/twinning-detwinning systems was measured at desired fatigue stages via EBSD observations together with in-grain misorientation axes(IGMA)analysis.The results indicate that the activation of deformation modes in the TD sample was featured by the cyclic transition,i.e.,prismatic slip(at the tensile interval)→{10–12}tension twinning(at the compressive reversal)→detwinning+prismatic slip(at the re-tensile reversal).In the case of the ED sample,the cyclic deformation was dominated by the basal slip throughout the fatigue life.For cracking modes,intergranular cracking and persistent slip bands(PSB)cracking were the primary cracking modes in the ED sample while the TD sample showed a high tendency of{10–12}tension twinning cracking(TTW cracking).The underlying mechanisms influencing the activation of various slip/twinning-detwinning systems,as well as cracking modes and cyclic mechanical behavior,were discussed.
基金Project(2019KJ2X08-4) supported by Chinalco Technology Development Project Fund,China。
文摘Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental plate with different porosities was compared in this study. The X-ray computed tomography(XCT) was utilized to characterize the size, number density and spatial distribution of porosity inside various samples, and the fracture surface of fatigued specimens was compared by using scanning electron microscope(SEM). The results showed that the fatigue cracks prefer to initiate from constituent particles in the commercial alloy. Whereas the micro porosity is the predominant site for crack nucleation and subsequent failure in the experimental one. The presence of micro porosity in experimental7050-T7451 thick plate may reduce the fatigue life by an order of magnitude or more compared with the defect-free alloy. The pores close to sample surface are the main fatigue crack initiation site, among which larger and deeper pore leads to a shorter fatigue life. The crack initiation is also affected by the pore geometry and direction. Besides, the overall porosity inside the bulk can affect the crack propagation during fatigue tests.
基金the financial supports from the National Natural Science Foundation of China(No.51871033)the Opening Project of State Key Laboratory for Advanced Metals and Materials,China(No.2020-ZD02)。
文摘The effect of quenching rate on the aging precipitation behavior and properties of Al-Zn-Mg-Cu-Zr-Er alloy was investigated.The scanning electron microscopy,transmission electron microscopy,and atom probe tomography were used to study the characteristics of clusters and precipitates in the alloy.The quench-inducedηphase and a large number of clusters are formed in the air-cooled alloy with the slowest cooling rate,which contributes to an increment of hardness by 24%(HV 26)compared with that of the water-quenched one.However,the aging hardening response speed and peak-aged hardness of the alloy increase with the increase of quenching rate.Meanwhile,the water-quenched alloy after peak aging also has the highest strength,elongation,and corrosion resistance,which is due to the high driving force and increased number density of aging precipitates,and the narrowed precipitate free zones.
基金the financial supports from the National Key Research and Development Program of China(No.2016YFB-0300901)the National Natural Science Foundation of China(No.51871033)+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology,China(No.cstc2017jcyjAX0245)the Venture&Innovation Support Program for Chongqing Overseas Returnees,China(No.cx2018002).
文摘The hot deformation and dynamic recrystallization(DRX)behaviors of 7055 aluminum alloy were studied at temperatures of 390−470℃ and strain rates of 0.01−1 s^(−1).A low DRX fraction between 1% and 13% was observed by using EBSD technique.A modified JMAK-type DRX model was proposed for such low DRX fraction problems.The model was used together with commercial FEM software DEFORM-3D to simulate the hot compression of 7055 aluminum alloy.There was a good agreement between experimental and predicted DRX fractions and grain size with an average absolute relative error(AARE)of 13.7% and 6.3%,respectively.In order to further verify the validity of the proposed model,the model was also used to simulate DRX in industrial hot rolling of 7055 aluminum alloys.The results showed that the distribution of DRX fraction was inhomogeneous,and agreed with experimental observations.
基金financial support by Fundamental Research Funds for the National Key Research and Development Program of China(Project No.2016YFB0700403)the Venture&Innovation Support Program for Chongqing Overseas Returnees(Project No.cx2018057)+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology(Project Nos.cstc2019jcyjmsxm0548 and cstc2019jcyj-msxm X0306)the Fundamental Research Funds for the Central Universities(Project No.2021CDJJMRH-001)。
文摘A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensile properties of the alloy were investigated. The results indicate that the microstructure of centrifugal cast alloy consists of equiaxed grains and network-like eutectic structure present at grain boundaries. The ring-rolled alloy exhibits a characteristic bimodal microstructure composed of fine dynamic recrystallized(DRXed) grains with weak basal texture and coarse un-DRXed grains with strong basal texture, along with the presence of LPSO phase. With increasing amount of accumulative ring-rolling reduction, the coarse un-DRXed grains are refined via the formation of increasing amount of fine DRXed grains. Meanwhile, the dynamic precipitation of Mg5 RE phase occurs, generating a dispersion strengthening effect. A superior combination of strength and ductility is achieved in the ring-rolled alloy after an accumulative rolling reduction of 80%. The tensile strength of this ring-rolled alloy after peak aging is further enhanced, reaching 511 MPa, while keeping a reasonable ductility. The salient strengthening mechanisms identified include the grain boundary strengthening of fine DRXed grains, dispersion strengthening of dynamic precipitated Mg;RE phase, short fiber strengthening of LPSO lamellae/rods, and precipitation strengthening of nano-sized prismatic β precipitates and basal γ precipitates.
基金supports from the National Natural Science Foundation of China(No.51871033).
文摘Hardness tests and transmission electron microscopy were used to investigate the strategy of tailoring the phase fraction of precipitates in an Al-Zn-Mg-Cu alloy strengthened by T’ and η’ phases. Different phase fractions of T’ and η’ phases are presented in samples subjected to either single or two stages of ageing treatments at 120 and 150 ℃.For both types of ageing, the precipitation of η’ phase is found to be promoted by ageing at lower temperature and its phase fraction increases with prolonging ageing time at 120 ℃;whereas the phase fractions of T’ and η’ phases almost remain constant during ageing at 150 ℃. Besides, the strain fields produced by T’ and η’ phases were analyzed by using the geometric phase analysis technique, and on a macroscale the contributions of T’ and η’ phases to precipitation strengthening have been quantitatively predicted by combining the size, phase fraction and number density of precipitates.
基金the National Natural Science Foundation of China(Nos.51401172 and 51601003)Fundamental Research Funds for the Central Universities,China(No.2682020ZT114)open funding of International Joint Laboratory for Light Alloys(MOE),Chongqing University,China。
文摘The influence of Y content on the grain-scale twinning behavior in extruded Mg−xY(x=0.5,1,5,wt.%)sheets under uniaxial tension and compression along the extruded direction was statistically investigated.An automatic twin variant analysis was employed,based on large data sets obtained by electron backscatter diffraction(EBSD),including 2691 grains with 977 twins.The{1012}tension twinning(TTW)dominance and prevailing anomalous twinning behavior(Schmid factor(m)<0)under both tension and compression were found.The anomalous twinning behavior was more pronounced as Y content increased under tensile loading,indicating a promoted stochasticity of twin variant selection for more concentrated Mg−Y alloys.However,the trend for the Y-content dependent anomalous twinning behavior was opposite in compression.The fractions of the anomalous TTWs were found to be well correlated with the maximum Schmid factor(m_(max))values of basal slip and prismatic slip in the corresponding parent grains for compression and tension,respectively,indicating that twinning and dislocation slip might be closely related in the present Mg−Y alloys.
基金Project(CSTB2022TIAD-KPX0073)supported by the Chongqing Key Project for Technological Innovation and Application,ChinaProject(CSTB2022NSCQ-LZX0002)supported by the Natural Science Foundation of Chongqing,ChinaProjects(2022-Z03,2020-ZD02)supported by the Opening Project of State Key Laboratory for Advanced Metals and Materials,China。
基金supported by the National Natural Science Foundation of China(No.51871033)the Opening Project of the State Key Laboratory for Advanced Metals and Materials(Nos.2020-ZD02 and 2022-Z03).
文摘Al-Zn-Mg-Cu alloys with different major strengthening precipitates are subjected to a novel combinatorial pre-treatment,including natural ageing and pre-stretching.The evolution of hardness and microstructure during the combinatorial pre-treatment and subsequent artificial ageing has been investigated.The results reveal that the growth rate of hardness in alloy B(Zn/Mg=10.0)is much higher than that of alloy A(Zn/Mg=1.5)due to the fast precipitation kinetics ofηphase compared with T phase.Both GP I zones and dislocations introduced by the combinatorial pre-treatment can act as heterogeneous nucleation sites for precipitation,resulting in more precipitates and higher hardness than pre-stretched alloys A and B.Dislocations distribute uniformly in combinatorial pre-treated alloys owing to the existence of GP I zones and dislocations,which promote the precipitation and refine the precipitate size.Moreover,these alloys with distinct pre-stretching(2%–10%)show similar precipitation behavior and peak hardness,and it indicates that the dislocation-induced precipitation will not be affected by the density of dislocations when plenty of GP I zones pre-exist.
基金This work was financially supported by the National Natural Science Foundation of China(Projects 52171102,51971041)the Fundamental Research Funds for the central universities(No.2023CDJXY-018).
文摘AZ31/Mg3Y composites with a layer thickness of 100-200μm were fabricated by accumulated rolling bonding(ARB),which was followed by diffusion annealing at 300℃ for 0-32 h.An interface layer,containing numerous Al-Y precipitates,is formed in the Mg3Y layer that is adjacent to the interface as a result of Al diffusing from the AZ31 layers into the Mg3Y layers.The thickness of the interface layer gets increased and more precipitates are formed in the interface layer with the extension of the annealing time.The microhardness of the AZ31 and Mg3Y layer decreases firstly and then reaches a stable value,while the microhardness of the interface layer increases gradually with the extension of the annealing time.The AZ31/Mg3Y composites exhibit equivalent strength but increased ductility after diffusion annealing,in comparison to the as-rolled AZ31/Mg3Y composite.In addition,the AZ31/Mg3Y composites after annealing always present higher strength and ductility than AZ31/AZ31 composite,which was fabricated by the same process as that for the AZ31/Mg3Y composites.Hetero-deformation induced strengthening also plays an important role in the excellent strength and ductility of the annealed AZ31/Mg3Y composite.This study can provide a direction for improving the plasticity and strength of magnesium alloys synergistically.
基金supported by the National Natural Science Foundation of China(No.51871033)the National Key Research and Development Program of China(2016YFB0700401)the Opening Project of State Key Laboratory for Advanced Metals and Materials(No.2020-ZD02)。
文摘The effects of Zn/Mg ratios on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys aged at 150℃have been investigated by using tensile tests,optical metallography,scanning electron microscopy,transmission electron microscopy and atom probe tomography analyses.With increasing Zn/Mg ratios,the ageing process is significantly accelerated and the time to peak ageing is reduced.T’phase predominates in alloys of lower Zn/Mg ratios whileη’phase predominates in alloys with a Zn/Mg ratio over 2.86.Co-existence of T’phase andη’phase with a large number density is beneficial to the high strength of alloys.Such precipitates together with narrow precipitate free zones cause a brittle intergranular fracture.A strength model has been established to predict the co-strengthening effect of T’phase andη’phase in Al-Zn-Mg-Cu alloys,including the factors of the grain boundary,solid solution and precipitation.
基金financially supported by the National Key R&D Program of China(No.2016YFB0301100)the National Natural Science Foundation of China(Nos.51571043 and 51531002)the Fundamental Research Funds for the Central Universities(Nos.2018CDJDCL0019 and cqu2018CDHB1A08)
文摘The influence of Zn on the strain hardening of as-extruded Mg-x Zn(x = 1, 2, 3 and 4 wt%) magnesium alloys was investigated using uniaxial tensile tests at 10^(-3)s^(-1) at room temperature. The strain hardening rate,the strain hardening exponent and the hardening capacity were obtained from true plastic stress-strain curves. There were almost no second phases in the as-extruded Mg-Zn magnesium alloys. Average grain sizes of the four as-extruded alloys were about 17.8 μm. With increasing Zn content from 1 to 4 wt%, the strain hardening rate increased from 2850 MPa to 6810 MPa at(б-б_(0.2)) = 60 MPa, the strain hardening exponent n increased from 0.160 to 0.203, and the hardening capacity, Hc increased from 1.17 to 2.34.The difference in strain hardening response of these Mg-Zn alloys might be mainly caused by weaker basal texture and more solute atoms in the α-Mg matrix with higher Zn content.
基金financially supported by the National Natural Science Foundation of China(Nos.51531009,51711530713 and 51501230)the Central South University(No.2018gczd033).
文摘Excellent comprehensive mechanical properties including good formability,high strength and high ductility are prior demands for Al-Mg-Si-Cu alloys.This study utilizes calculation of phase diagram(CALPHAD)to simplify the alloy design and meet these demands.Specifically,CALPHAD was used to finely tune the Mg/Si atomic ratio in solid solution and accurately control the type and content of second phases,especially to avoid the formation of the harmful constituent phaseβ-Al Fe Si.Constituents and dispersoids of only-Al Fe Mn Si phase were found in the alloy prepared.An optimized microstructure with fine grains,micro scale constituents,densely distributed submicron scale dispersoids and extremely dense nano precipitates provides effective impediment to dislocation gliding and induces transgranular fracture.Therefore,the designed alloy has better comprehensive mechanical properties than other 6 xxx series aluminum alloys,including excellent formability,strength and ductility.The low T4P strength of 149 MPa as well as the high elongation of 26.1%implies the alloy’s applicability to automobile body panel forming.The yield strength was rapidly improved from 149 MPa to 277 MPa during the paint bake ageing,because the number density of precipitates is twice as high as that of some other 6xxx alloys.Meanwhile,the elongation was kept at a high level of 20.0%.
基金supported by the National Natural Science Foundation of China(Grant Nos.51571046 and 51421001)the Fundamental Research Funds for the Central Universities(Grant No.2018CDJDCL0019)the“111”Project(Grant No.B16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China。
文摘The deformation mechanism of CoCrNi alloy with high density of annealing twins was studied by in situ transmission electron microscopy. Dislocation transmission and reflection at the twin boundary were observed during in situ loading. We characterized these reaction processes by combining TEM, dislocation theory and crystallography of twin. Twin boundary not only strengthens the material by impeding the motion of dislocation, but also acts as dislocation source to produce large of slip bands. These processes generate large of slip bands to accommodate the plastic deformation or strengthening material.
基金financially supported by the National Natural Science Foundation of China(Nos.51621063,51625103,51722104,51790482,51761135031 and 51871033)the National Key Research and Development Program of China(No.2016YFB0700403)+1 种基金the 111 Project of China(No.BP2018008)supported by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies.
文摘It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have dual effect on the coarsening of Al3Sc nanoprecipitates.On the one hand,the Cu atoms with high diffusivity tend to accelerate the Al3Sc coarsening,which results from the Cu-promoted Sc diffusion.On the other hand,some Cu atoms will segregate at the Al3Sc/matrix interface,which further stabilizes the Al3Sc nanoprecipitates by reducing the interfacial energy.Competition between these two effects is tailored by temperature,which rationalizes the experimental findings that the coarsening kinetics of Al3Sc nanoprecipitate is greatly boosted at 300℃-overaging while significantly suppressed at 400℃-overaging.
基金support by the National Natural Science Foundation of China(52071033)Open Foundation of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(32115016).
文摘Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are generated after cold rolling and are mainly distributed inside{1012}twins.After aging treatment,the formation of single-layer and three-layer Bi atom segregation in the vicinity of I_(1)fault are clearly observed.Bi segregation also occurs at the 1/6<2203>bounding Frank partial dislocation cores.The segregation behaviors in I_(1)fault and Frank dislocations are discussed and rationalized using first-principles calculations.
基金supported by the National Natural Science Foundation of China(Nos.51575068 and 51501023)the State Key Research and Development Program of MOST,China(No.2016627 YFB0701204)+2 种基金the Fundamental Research Funds for the Central Universities(No.2020CDJDPT001)the Chongqing Natural Science Foundation(Nos.cstc2018jcyjAX0364 and cstc2021jcyj-msxmX0699)the“111”Project of the Ministry of Education(No.B16007).
文摘Conventional wrought Mg alloys,such as AZ31 and ZK60 rolled plates,usually exhibit significantly low tensile yield strength in the thickness direction.This can be attributed to the high activity of{10-12}tension twinning due to the strong basal texture(<0001>//ND,normal direction).In this work,the tensile yield strength in the ND of the as-rolled(AR)AZ31 plate increased from 50 to 150 MPa(increased by 200%)via simple processing,i.e.,pre-tension and rolling-annealing(PTRA)treatment.The strong basal texture(<0001>//ND)of the AR plate was changed into a weakened fiber texture(<0001>⊥ND).The evolution of microstructures during PTRA treatment and the activated deformation modes during uniaxial tension were studied quantitatively and statistically by the means of intergranular misorientation(IM)and in-grain misorientation axes(IGMA)analysis.The results indicate that various twin variants,as well as{10-12}-{10-12}secondary twins,were activated during pre-tension and rolling,and most residual matrix was consumed by twins after annealing.The dominated deformation modes in tension changed from{10-12}tension twinning(the AR sample)to prismatic slip(the PTRA sample)in the early tensile deformation.The underlying formation mechanism of the fiber texture and corresponding strengthening mechanism were discussed.