Air pollution has environmental issue owing become a serious to its diverse harmful effects on the physical and biological environment. According to the Environmental Protection Agency (EPA) and the World Health Org...Air pollution has environmental issue owing become a serious to its diverse harmful effects on the physical and biological environment. According to the Environmental Protection Agency (EPA) and the World Health Organization (WHO), air pollution affects millions of people worldwide. Hundreds of thousands of deaths each year and a range of diseases, particularly among vulnerable groups (i.e., children, the elderly, and people with special medical conditions), are attributed to air pollution. These effects are not always caused by single pollutant in the air; rather, they are considered consequences of the multi-pollutants to which people are simultaneously exposed.展开更多
The distribution and fractionation of persistent organic pollutants(POPs)in different matrices refer to how these pollutants are dispersed and separated within various environmental compartments.This is a significant ...The distribution and fractionation of persistent organic pollutants(POPs)in different matrices refer to how these pollutants are dispersed and separated within various environmental compartments.This is a significant study area as it helps us understand the transport efficiencies and long-range transport potentials of POPs to enter remote areas,particularly polar regions.This study provides a comprehensive review of the progress in understanding the distribution and fractionation of POPs.We focus on the contributions of four intermedia processes(dry and wet depositions for gaseous and particulate POPs)and determine their transfer between air and soil.These processes are controlled by their partitioning between gaseous and particulate phases in the atmosphere.The distribution patterns and fractionations can be categorized into primary and secondary types.Equations are developed to quantificationally study the primary and secondary distributions and fractionations of POPs.The analysis results suggest that the transfer of low molecular weight(LMW)POPs from air to soil is mainly through gas diffusion and particle deposition,whereas high molecular weight(HMW)POPs are mainly via particle deposition.HMW-POPs tend to be trapped near the source,whereas LMW-POPs are more prone to undergo long-range atmospheric transport.This crucial distinction elucidates the primary reason behind their temperatureindependent primary fractionation.However,the secondary distribution and fractionation can only be observed along a temperature gradient,such as latitudinal or altitudinal transects.An animation is produced by a one-dimensional transport model to simulate conceptively the transport of CB-28 and CB-180,revealing the similarities and differences between the primary and secondary distributions and fractionations.We suggest that the decreasing temperature trend along latitudes is not the major reason for POPs to be fractionated into the polar ecosystems,but drives the longer-term accumulation of POPs in cold climates or polar cold trapping.展开更多
Environmental pollutants,such as persistent organic pollutants(POPs),enter the Arctic mainly via long-range transport(LRT)through atmospheric and ocean/river currents.On the other hand,chemicals of emerging Arctic con...Environmental pollutants,such as persistent organic pollutants(POPs),enter the Arctic mainly via long-range transport(LRT)through atmospheric and ocean/river currents.On the other hand,chemicals of emerging Arctic concern(CEACs)are often introduced as local contaminants from industrial,municipal,or infrastructure-related releases.Regardless of their origins,all these contaminants negatively impact the health of the environment and the indigenous populations.Furthermore,in recent decades,the Arctic has been experiencing unprecedented climate changes.The combination of Arctic environmental changes and the introduction of new anthropogenic contaminants as chemical aids for exploiting Arctic resources led to a severe imbalance in the Arctic ecosystems.Therefore,an international consortium of Arctic experts asked for internationally coordinated actions to mitigate the serious problems that environmental pollution causes on Arctic ecosystems and people,according to the Berlin statement[1].展开更多
Seventeen topsoil samples (9 urban, 4 suburban, 3 rural and 1 background) were collected in/around Harbin, a typical city in northeast of China, to measure concentration levels of organocholrine pesticides (OCPs) ...Seventeen topsoil samples (9 urban, 4 suburban, 3 rural and 1 background) were collected in/around Harbin, a typical city in northeast of China, to measure concentration levels of organocholrine pesticides (OCPs) in topsoil of Northeastern China in 2006. Hexachlorohexanes (HCH), dichlorodiphenyltrichloroethane (DDT), and hexachlorobenzene (HCB) were detected in soil samples with mean concentrations (in pg/g dry weight (dw)) of 7120, 5425, and 1039, respectively. The mean concentrations for other OCPs were very low, 4.8 pg/g dw for chlordane and 3.3 pg/g dw for endosulfan. Source identification analysis reveals that all OCPs found in soil samples were due to historical use of these chemicals or from other source regions through long- and short-range atmospheric transport. DDT was mainly used in the rural sites, whereas the sources of HCB, chlordane and endosulfan were mainly in the urban area. HCH was found almost equally in both urban and rural area. Soil concentrations of all detected OCPs, except HCHs, in and around Harbin were much lower than those in the southeast of China, which is expected since the use of these OCPs in the former was much lower than that in the latter, however higher HCH concentrations in and around Harbin than those found in most places of the Southeast China is not expected. It is suggested that high HCH concentration in soil of Northeast China was most likely due to long-range atmospheric transport (LRAT) from Southeast China and the cold condensation process.展开更多
Sixty sediment samples were collected from the main Songhua River in three years. Twelve polybrominated diphenyl ether( PBDE) congeners( BDE17,28,47,66,99,100,153,154,138,183,and BDE-209) were detected to state the po...Sixty sediment samples were collected from the main Songhua River in three years. Twelve polybrominated diphenyl ether( PBDE) congeners( BDE17,28,47,66,99,100,153,154,138,183,and BDE-209) were detected to state the pollution situation. The results showed that the total concentration of total PBDEs ranges from 0. 424 to 23. 0 ng / g dry weight,with the mean of 3. 02 ng / g,and the total PBDEs concentration is at relative low level compared with those worldwide. The congener profile showed that BDE-209 is the dominant congener that accounts for more than 80. 1% of total PBDEs in sediments,followed by BDE-47 and BDE-99. These profiles are consistent with a high consumption of Deca-BDEs for the brominated flame retardant market in China. The results of spatial and seasonal observations indicated that local sources,temperature variation, and hydrologic conditions are significant factors on PBDEs concentrations. Hazard quotients suggested that PBDEs pose no potential risk to benthic organisms in detected area at present.展开更多
This paper reviews the studies of using FTIR to investigate the components of aerosols produced in smog chamber experiments and collected in atmosphere. The fact that aerosols are mixture of small amount of countless ...This paper reviews the studies of using FTIR to investigate the components of aerosols produced in smog chamber experiments and collected in atmosphere. The fact that aerosols are mixture of small amount of countless individual compounds makes the analysis of aerosol constituents very challenging. Although a number of advanced instruments have been applied to the chemical characterization of aerosol components, the majority of aerosol components, particularly the organics, remain unknown. Being supplemental to the traditional quantitative instruments, FTIR has been recently used either individually or combining with other analytical instruments to characterize the components of aerosol particles. This paper aims to show how FTIR is applied to analysis of organic aerosols in current literature and to summarize the FTIR characteristic peak frequencies that are widely seen in the FTIR measurement of organic aerosols. It will be greatly helpful to researchers whose studies are focused on the analysis of aerosol components.展开更多
The historical annual loading to,removal from,and cumulative burden in the Arctic Ocean for β-hexachlorocyclohexane(β-HCH),an isomer comprising 5e12%of technical HCH,is investigated using a mass balance box model fr...The historical annual loading to,removal from,and cumulative burden in the Arctic Ocean for β-hexachlorocyclohexane(β-HCH),an isomer comprising 5e12%of technical HCH,is investigated using a mass balance box model from 1945 to 2020.Over the 76 years,loading occurred predominantly through ocean currents and river inflow(83%)and only a small portion via atmospheric transport(16%).β-HCH started to accumulate in the Arctic Ocean in the late 1940s,reached a peak of 810 t in 1986,and decreased to 87 t in 2020,when its concentrations in the Arctic water and air were~30 ng m^(-3)and~0.02 pg m^(-3),respectively.Even though β-HCH and α-HCH(60e70%of technical HCH)are both the isomers of HCHs with almost identical temporal and spatial emission patterns,these two chemicals have shown different major pathways entering the Arctic.Different from α-HCH with the long-range atmospheric transport(LRAT)as its major transport pathway,β-HCH reached the Arctic mainly through long-range oceanic transport(LROT).The much higher tendency of β-HCH to partition into the water,mainly due to its much lower Henry's Law Constant than α-HCH,produced an exceptionally strong pathway divergence with β-HCH favoring slow transport in water and α-HCH favoring rapid transport in air.The concentration and burden of β-HCH in the Arctic Ocean are also predicted for the year 2050 when only 4.4-5.3 t will remain in the Arctic Ocean under the influence of climate change.展开更多
The hazards of polycyclic aromatic hydrocarbons(PAHs)on occupationally exposed population have been widely acknowledged.However,the occupational exposure risks associated their derivatives,methylated PAHs,remain poorl...The hazards of polycyclic aromatic hydrocarbons(PAHs)on occupationally exposed population have been widely acknowledged.However,the occupational exposure risks associated their derivatives,methylated PAHs,remain poorly understood.This study conducted a screen of 126 PAHs and 6 oxidative stress biomarkers(OSBs)in paired serum−urine samples from 110 petrochemical workers to assess the risk associated with different PAHs exposure.The results showed that the median concentrations of unmetabolized 16 priority PAHs(p-PAHs),16 regular PAHs(R-PAHs),50 methyl-PAHs(Me-PAHs),and 30 nitro-PAHs(N-PAHs)in serum(urine)were 97.98(66.46),11.02(0.00),77.76(31.77),and 1.93(0.10)ng/mL,respectively.The median concentration of metabolized hydroxy PAHs(OH-PAHs)in urine was 12.00 ng/mL(9.49 ng/mg creatinine).OSBs indicate that the hazards of Me-PAHs on exposed populations manifest as protein damage,while the hazards of p-PAHs mainly result in lipid and DNA damage.Results from common diseases and PAH exposure demonstrate a correlation between liver damage and PAH exposure,and Me-PAHs are more difficult to metabolize through urine due to their stronger lipophilicity.This study suggests that traditional health screenings targeting p-PAHs may be insufficient and likely underestimate the exposure risks for occupational populations.展开更多
Intermediate volatility organic compounds(IVOCs)are crucial precursors of secondary organic aerosol(SOA).In this study,gaseous IVOCs emitted from a ship main engine burning heavy fuel oil(HFO)were investigated on a te...Intermediate volatility organic compounds(IVOCs)are crucial precursors of secondary organic aerosol(SOA).In this study,gaseous IVOCs emitted from a ship main engine burning heavy fuel oil(HFO)were investigated on a test bench,which could simulate the real-world operations and emissions of ocean-going ships.The chemical compositions,emission factors(EFs)and volatility distributions of IVOC emissions were investigated.The results showed that the main engine burning HFO emitted a large amount of IVOCs,with average IVOC EFs of 20.2-201 mg/kg-fuel.The IVOCs were mainly comprised of unspeciated compounds.The chemical compositions of exhaust IVOCs were different from that of HFO fuel,especially for polycyclic aromatic compounds and alkylcyclohexanes.The volatility distributions of IVOCs were also different between HFO exhausts and HFO fuel.The distinctions in IVOC emission characteristics between HFO exhausts and HFO fuel should be considered when assessing the IVOC emission and related SOA formation potentials from ocean-going ships burning HFO,especially when using fuel-surrogate models.展开更多
The widespread use of organophosphorus pesticides(OPs) poses a great threat to human health and has made the detection of OP residues in food an important task,especially in view of the fact that easy and rapid detect...The widespread use of organophosphorus pesticides(OPs) poses a great threat to human health and has made the detection of OP residues in food an important task,especially in view of the fact that easy and rapid detection methods are needed.Because OPs have inhibitory effects on the activity of α-naphthyl acetate esterase(ANAE) in plants,in this work we evaluated the possibility of detecting OPs in vegetables with ANAE extracted from commercial flour.The limits of detection(LODs) obtained for methamidophos,dichlorvos,phoxim,dimethoate,and malathion in lettuce samples with crude ANAE were 0.17,0.11,0.11,0.96,and 1.70 mg/kg,respectively.Based on the maximum residue limits(MRLs) for OPs in food stipulated by Chinese laws which are 0.05,0.20,0.05,1.00,and 8.00 mg/kg for methamidophos,dichlorvos,phoxim,dimethoate,and malathion,respectively,the esterase inhibition method with crude ANAE had sufficient sensitivity to detect the residues of dichlorvos,dimethoate,and malathion in lettuce,but it could not be used to guarantee the safety of the same samples if methamidophos or phoxim residue was present.The sensitivity of the method was improved by the use of esterase purified by ammonium sulfate salting-out.The LODs obtained for methamidophos and phoxim with purified esterase were lower than the MRLs for these OPs in food.This is a very promising method for the detection of OP residues in vegetables using crude or purified esterase because of its cheapness,sensitivity,and convenience.展开更多
Ship auxiliary engines contribute large amounts of air pollutants when at berth.Biodiesel,including that from waste cooking oil(WCO),can favor a reduction in the emission of primary pollutant when used with internal c...Ship auxiliary engines contribute large amounts of air pollutants when at berth.Biodiesel,including that from waste cooking oil(WCO),can favor a reduction in the emission of primary pollutant when used with internal combustion engines.This study investigated the emissions of gaseous intermediate-volatile organic compounds(IVOCs)between WCO biodiesel and marine gas oil(MGO)to further understand the differences in secondary organic aerosol(SOA)production of exhausts.Results revealed that WCO exhaust exhibited similar IVOC composition and volatility distribution to MGO exhaust,despite the differences between fuel contents.While WCO biodiesel could reduce IVOC emissions by 50%as compared to MGO,and thus reduced the SOA production from IVOCs.The compositions and volatility distributions of exhaust IVOCs varied to those of their fuels,implying that fuel-component-based SOA predicting model should be used with more cautions when assessing SOA production of WCO and MGO exhausts.WCO biodiesel is a cleaner fuel comparing to conventional MGO on ship auxiliary engines with regard to the reductions in gaseous IVOC emissions and corresponding SOA productions.Although the tests were conducted on test bench,the results could be considered as representative due to the widely applications of the test engine and MGO fuel on real-world ships.展开更多
Neonicotinoid insecticides(NNIs)have been intensively used and exploited,resulting in their presence and accumulation in multiple environmental media.We herein investigated the current levels of eight major NNIs in th...Neonicotinoid insecticides(NNIs)have been intensively used and exploited,resulting in their presence and accumulation in multiple environmental media.We herein investigated the current levels of eight major NNIs in the Harbin section of the Songhua River in northeast China,providing the first systematic report on NNIs in this region.At least four NNIs in water and three in sediment were detected,with total concentrations ranging from 30.8 to 135 ng L^(-1) and from 0.61 to 14.7 ng g^(-1) dw,respectively.Larger spatial variations in surface water NNIs concentrations were observed in tributary than mainstream(p<0.05)due to the intensive human activities(e.g.,horticulture,urban landscaping,and household pet flea control)and the discharge of wastewater from many treatment plants.There was a significant positive correlation(p<0.05)between the concentrations of residual imidacloprid(IMI),clothianidin(CLO),and S4NNIs in the sediment and total organic carbon(TOC).Due to its high solubility and low octanol-water partition coefficient(Kow),the sediment-water exchange behavior shows that NNIs in sediments can re-enter into the water body.Human exposure risk was assessed using the relative potency factor(RPF),which showed that infants have the highest exposure risk(estimated daily intake(SIMIeq EDI):31.9 ng kg^(-1) bw$d^(-1)).The concentration thresholds of NNIs for aquatic organisms in the Harbin section of the Songhua River were determined using the species sensitivity distribution(SSD)approach,resulting in a value of 355 ng L^(-1) for acute hazardous concentration for 5%of species(HC5)and 165 ng L^(-1) for chronic HC5.Aquatic organisms at low trophic levels were more vulnerable to potential harm from NNIs.展开更多
In order to investigate the transfer and migration behavior of polycyclic aromatic hydrocarbons(PAHs)in soil with long-term wastewater irrigation,Groundwater Ubiquity Score(GUS)and fugacity method were respectively us...In order to investigate the transfer and migration behavior of polycyclic aromatic hydrocarbons(PAHs)in soil with long-term wastewater irrigation,Groundwater Ubiquity Score(GUS)and fugacity method were respectively used to assess the potential entry into the groundwater and transfer capacity of PAHs.The results of assessment using GUS show that there is significant correlation between the GUS and organic carbon sorption coefficient(KOC)for PAHs and a simple assessment method with KOC was referred to evaluate contamination of groundwater.Applying fugacity method,evaluation results of transfer and migration of PAHs in soil suggest that the PAHs accumulation in the soil through long-term wastewater irrigation could be re-volatilized as secondary emission sources to atmosphere for the Low Molecular Weight(LMW)PAHs,in contrast to High Molecular Weight(HMW)PAHs for which the soil remains a sink that could absorb more PAHs.The net volatilisation flux was 0.39 g/d in upland and 0.32 g/d in paddy for LMW Nap(Naphthalene),and 0.97×10^(-3)g/d in upland and 0.37×10^(-3)g/d in paddy for LMW Phe(Phenanthrene).The net deposition was 0.72×10^(-4)g/d in upland and 0.10×10^(-3)g/d in paddy for HMW Fla(Fluoranthene),and 0.22×10^(-4)g/d in upland and 0.20×10^(-4)g/d in paddy for HMW Bap(Benzo[a]pyrene).Sensitivities of the model estimates to input parameters were tested,and the sensitivity coefficient was defined for the test.The most influential parameters were the volumes of the air,water,and organic carbon fractions in soil and the thickness of the soil.展开更多
This paper reviews the usage and emissions of endosulfan, the newest member of the persistent organic pollutants (POPs), in China, and its fate and behavior in Chinese environment. Endosulfan usage in China has been...This paper reviews the usage and emissions of endosulfan, the newest member of the persistent organic pollutants (POPs), in China, and its fate and behavior in Chinese environment. Endosulfan usage in China has been estimated to be approximately 25700 t between 1994 and 2004. Concentrations of endosulfan in different environ- mental compartments in China, such as air, soil, water, and biota, but focusing at air and surface soil, have been summarized. Concentrations of total endosulfan in surface soil across China were ranged from below detection limit (BDL) to 19000 pg.g^-1 dry weight (dw), with geometric mean of 120pg.g^-1dw. The results indicated that endo- sulfan sulfate had highest concentration in Chinese soil, followed by r- and α-endosulfan. Air concentrations of endosulfan in China were ranged 0-340 pg.m3 for a- endosulfan and 0-121 pg. m--3 for β-endosulfan, with high concentrations occurred in the cotton production areas. Gridded usage inventories of endosulfan on a fine gridded system with a 1/4° longitude by 1/6° latitude resolution were compiled, from which, emission to air and residues in soil of endosulfan were calculated in each grid by using a modified simplified gridded pesticide emission and residue model (SGPERM), an integrated modeling system combining mathematical model, database management system, and geographic information system. Total emissions were around 10800 t from 1994 to 2004. Based on the emission and residue inventories, concentrations of α- and β- endosulfan in Chinese air and agricultural surface soil were also calculated for each grid cell, which are in general consistent with the published monitoring data.展开更多
文摘Air pollution has environmental issue owing become a serious to its diverse harmful effects on the physical and biological environment. According to the Environmental Protection Agency (EPA) and the World Health Organization (WHO), air pollution affects millions of people worldwide. Hundreds of thousands of deaths each year and a range of diseases, particularly among vulnerable groups (i.e., children, the elderly, and people with special medical conditions), are attributed to air pollution. These effects are not always caused by single pollutant in the air; rather, they are considered consequences of the multi-pollutants to which people are simultaneously exposed.
基金supported by the National Natural Science Foundation of China(42077341),the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.2022TS05)the Special Project for Sustainable Development Science Technology in Shenzhen(No.KCXFZ20201221173000001)supported by the Heilongjiang Touyan Innovation Team Program and the Natural Science Foundation of Heilongjiang Province of China(Grant No.LH2021E096),China.
文摘The distribution and fractionation of persistent organic pollutants(POPs)in different matrices refer to how these pollutants are dispersed and separated within various environmental compartments.This is a significant study area as it helps us understand the transport efficiencies and long-range transport potentials of POPs to enter remote areas,particularly polar regions.This study provides a comprehensive review of the progress in understanding the distribution and fractionation of POPs.We focus on the contributions of four intermedia processes(dry and wet depositions for gaseous and particulate POPs)and determine their transfer between air and soil.These processes are controlled by their partitioning between gaseous and particulate phases in the atmosphere.The distribution patterns and fractionations can be categorized into primary and secondary types.Equations are developed to quantificationally study the primary and secondary distributions and fractionations of POPs.The analysis results suggest that the transfer of low molecular weight(LMW)POPs from air to soil is mainly through gas diffusion and particle deposition,whereas high molecular weight(HMW)POPs are mainly via particle deposition.HMW-POPs tend to be trapped near the source,whereas LMW-POPs are more prone to undergo long-range atmospheric transport.This crucial distinction elucidates the primary reason behind their temperatureindependent primary fractionation.However,the secondary distribution and fractionation can only be observed along a temperature gradient,such as latitudinal or altitudinal transects.An animation is produced by a one-dimensional transport model to simulate conceptively the transport of CB-28 and CB-180,revealing the similarities and differences between the primary and secondary distributions and fractionations.We suggest that the decreasing temperature trend along latitudes is not the major reason for POPs to be fractionated into the polar ecosystems,but drives the longer-term accumulation of POPs in cold climates or polar cold trapping.
文摘Environmental pollutants,such as persistent organic pollutants(POPs),enter the Arctic mainly via long-range transport(LRT)through atmospheric and ocean/river currents.On the other hand,chemicals of emerging Arctic concern(CEACs)are often introduced as local contaminants from industrial,municipal,or infrastructure-related releases.Regardless of their origins,all these contaminants negatively impact the health of the environment and the indigenous populations.Furthermore,in recent decades,the Arctic has been experiencing unprecedented climate changes.The combination of Arctic environmental changes and the introduction of new anthropogenic contaminants as chemical aids for exploiting Arctic resources led to a severe imbalance in the Arctic ecosystems.Therefore,an international consortium of Arctic experts asked for internationally coordinated actions to mitigate the serious problems that environmental pollution causes on Arctic ecosystems and people,according to the Berlin statement[1].
基金supported by the Heilongjiang Province Postdoctoral Research Funding (No AUGA41001074)the State Key Lab of Urban Water Resource and Envi-ronment, Harbin Institute of Technology (No 2008DX01)
文摘Seventeen topsoil samples (9 urban, 4 suburban, 3 rural and 1 background) were collected in/around Harbin, a typical city in northeast of China, to measure concentration levels of organocholrine pesticides (OCPs) in topsoil of Northeastern China in 2006. Hexachlorohexanes (HCH), dichlorodiphenyltrichloroethane (DDT), and hexachlorobenzene (HCB) were detected in soil samples with mean concentrations (in pg/g dry weight (dw)) of 7120, 5425, and 1039, respectively. The mean concentrations for other OCPs were very low, 4.8 pg/g dw for chlordane and 3.3 pg/g dw for endosulfan. Source identification analysis reveals that all OCPs found in soil samples were due to historical use of these chemicals or from other source regions through long- and short-range atmospheric transport. DDT was mainly used in the rural sites, whereas the sources of HCB, chlordane and endosulfan were mainly in the urban area. HCH was found almost equally in both urban and rural area. Soil concentrations of all detected OCPs, except HCHs, in and around Harbin were much lower than those in the southeast of China, which is expected since the use of these OCPs in the former was much lower than that in the latter, however higher HCH concentrations in and around Harbin than those found in most places of the Southeast China is not expected. It is suggested that high HCH concentration in soil of Northeast China was most likely due to long-range atmospheric transport (LRAT) from Southeast China and the cold condensation process.
基金Sponsored by the National Natural Science Foundation of China(Grant No.21277038)
文摘Sixty sediment samples were collected from the main Songhua River in three years. Twelve polybrominated diphenyl ether( PBDE) congeners( BDE17,28,47,66,99,100,153,154,138,183,and BDE-209) were detected to state the pollution situation. The results showed that the total concentration of total PBDEs ranges from 0. 424 to 23. 0 ng / g dry weight,with the mean of 3. 02 ng / g,and the total PBDEs concentration is at relative low level compared with those worldwide. The congener profile showed that BDE-209 is the dominant congener that accounts for more than 80. 1% of total PBDEs in sediments,followed by BDE-47 and BDE-99. These profiles are consistent with a high consumption of Deca-BDEs for the brominated flame retardant market in China. The results of spatial and seasonal observations indicated that local sources,temperature variation, and hydrologic conditions are significant factors on PBDEs concentrations. Hazard quotients suggested that PBDEs pose no potential risk to benthic organisms in detected area at present.
文摘This paper reviews the studies of using FTIR to investigate the components of aerosols produced in smog chamber experiments and collected in atmosphere. The fact that aerosols are mixture of small amount of countless individual compounds makes the analysis of aerosol constituents very challenging. Although a number of advanced instruments have been applied to the chemical characterization of aerosol components, the majority of aerosol components, particularly the organics, remain unknown. Being supplemental to the traditional quantitative instruments, FTIR has been recently used either individually or combining with other analytical instruments to characterize the components of aerosol particles. This paper aims to show how FTIR is applied to analysis of organic aerosols in current literature and to summarize the FTIR characteristic peak frequencies that are widely seen in the FTIR measurement of organic aerosols. It will be greatly helpful to researchers whose studies are focused on the analysis of aerosol components.
基金supported by the National Natural Science Foundation of China(No.42077341)Natural Science Foundation of Heilongjiang Province of China(No.LH2021E096)+3 种基金State Key Laboratory of UrbanWater Resource and Environment(Harbin Institute of Technology)(No.2022TS05)the Polar Academy,Harbin Institute of Technology(No.PA-HIT-201901)the support from Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem(HPKLPEE),Harbin Institute of Technologyfunding from Canada's Northern Contaminants Program(Crown-Indigenous Relations and Northern Affairs Canada).
文摘The historical annual loading to,removal from,and cumulative burden in the Arctic Ocean for β-hexachlorocyclohexane(β-HCH),an isomer comprising 5e12%of technical HCH,is investigated using a mass balance box model from 1945 to 2020.Over the 76 years,loading occurred predominantly through ocean currents and river inflow(83%)and only a small portion via atmospheric transport(16%).β-HCH started to accumulate in the Arctic Ocean in the late 1940s,reached a peak of 810 t in 1986,and decreased to 87 t in 2020,when its concentrations in the Arctic water and air were~30 ng m^(-3)and~0.02 pg m^(-3),respectively.Even though β-HCH and α-HCH(60e70%of technical HCH)are both the isomers of HCHs with almost identical temporal and spatial emission patterns,these two chemicals have shown different major pathways entering the Arctic.Different from α-HCH with the long-range atmospheric transport(LRAT)as its major transport pathway,β-HCH reached the Arctic mainly through long-range oceanic transport(LROT).The much higher tendency of β-HCH to partition into the water,mainly due to its much lower Henry's Law Constant than α-HCH,produced an exceptionally strong pathway divergence with β-HCH favoring slow transport in water and α-HCH favoring rapid transport in air.The concentration and burden of β-HCH in the Arctic Ocean are also predicted for the year 2050 when only 4.4-5.3 t will remain in the Arctic Ocean under the influence of climate change.
基金supported by an open project of the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.ESK202107)the Fundamental Research Funds for the Central Universities(No.2022FRFK060013)supported by Heilongjiang Touyan Team.
文摘The hazards of polycyclic aromatic hydrocarbons(PAHs)on occupationally exposed population have been widely acknowledged.However,the occupational exposure risks associated their derivatives,methylated PAHs,remain poorly understood.This study conducted a screen of 126 PAHs and 6 oxidative stress biomarkers(OSBs)in paired serum−urine samples from 110 petrochemical workers to assess the risk associated with different PAHs exposure.The results showed that the median concentrations of unmetabolized 16 priority PAHs(p-PAHs),16 regular PAHs(R-PAHs),50 methyl-PAHs(Me-PAHs),and 30 nitro-PAHs(N-PAHs)in serum(urine)were 97.98(66.46),11.02(0.00),77.76(31.77),and 1.93(0.10)ng/mL,respectively.The median concentration of metabolized hydroxy PAHs(OH-PAHs)in urine was 12.00 ng/mL(9.49 ng/mg creatinine).OSBs indicate that the hazards of Me-PAHs on exposed populations manifest as protein damage,while the hazards of p-PAHs mainly result in lipid and DNA damage.Results from common diseases and PAH exposure demonstrate a correlation between liver damage and PAH exposure,and Me-PAHs are more difficult to metabolize through urine due to their stronger lipophilicity.This study suggests that traditional health screenings targeting p-PAHs may be insufficient and likely underestimate the exposure risks for occupational populations.
基金supported by the National Natural Science Foundation of China (Nos. 41403084 and 4171101108)the Project from Shanghai Committee of Science and Technology (No. 16ZR1414800
文摘Intermediate volatility organic compounds(IVOCs)are crucial precursors of secondary organic aerosol(SOA).In this study,gaseous IVOCs emitted from a ship main engine burning heavy fuel oil(HFO)were investigated on a test bench,which could simulate the real-world operations and emissions of ocean-going ships.The chemical compositions,emission factors(EFs)and volatility distributions of IVOC emissions were investigated.The results showed that the main engine burning HFO emitted a large amount of IVOCs,with average IVOC EFs of 20.2-201 mg/kg-fuel.The IVOCs were mainly comprised of unspeciated compounds.The chemical compositions of exhaust IVOCs were different from that of HFO fuel,especially for polycyclic aromatic compounds and alkylcyclohexanes.The volatility distributions of IVOCs were also different between HFO exhausts and HFO fuel.The distinctions in IVOC emission characteristics between HFO exhausts and HFO fuel should be considered when assessing the IVOC emission and related SOA formation potentials from ocean-going ships burning HFO,especially when using fuel-surrogate models.
基金Project supported by the National Basic Research Program (973) of China (No.2009CB119000)the National Natural Science Foundation of China (Nos.20707022,41073090,and 30771255)the Zhejiang Provincial Natural Science Foundation of China (No.Y507220)
文摘The widespread use of organophosphorus pesticides(OPs) poses a great threat to human health and has made the detection of OP residues in food an important task,especially in view of the fact that easy and rapid detection methods are needed.Because OPs have inhibitory effects on the activity of α-naphthyl acetate esterase(ANAE) in plants,in this work we evaluated the possibility of detecting OPs in vegetables with ANAE extracted from commercial flour.The limits of detection(LODs) obtained for methamidophos,dichlorvos,phoxim,dimethoate,and malathion in lettuce samples with crude ANAE were 0.17,0.11,0.11,0.96,and 1.70 mg/kg,respectively.Based on the maximum residue limits(MRLs) for OPs in food stipulated by Chinese laws which are 0.05,0.20,0.05,1.00,and 8.00 mg/kg for methamidophos,dichlorvos,phoxim,dimethoate,and malathion,respectively,the esterase inhibition method with crude ANAE had sufficient sensitivity to detect the residues of dichlorvos,dimethoate,and malathion in lettuce,but it could not be used to guarantee the safety of the same samples if methamidophos or phoxim residue was present.The sensitivity of the method was improved by the use of esterase purified by ammonium sulfate salting-out.The LODs obtained for methamidophos and phoxim with purified esterase were lower than the MRLs for these OPs in food.This is a very promising method for the detection of OP residues in vegetables using crude or purified esterase because of its cheapness,sensitivity,and convenience.
基金financially supported by the National Natural Science Foundation of China(Nos.41403084,41807341,4171101108 and 41603090)the Project from Shanghai Committee of Science and Technology(No.16ZR1414800)
文摘Ship auxiliary engines contribute large amounts of air pollutants when at berth.Biodiesel,including that from waste cooking oil(WCO),can favor a reduction in the emission of primary pollutant when used with internal combustion engines.This study investigated the emissions of gaseous intermediate-volatile organic compounds(IVOCs)between WCO biodiesel and marine gas oil(MGO)to further understand the differences in secondary organic aerosol(SOA)production of exhausts.Results revealed that WCO exhaust exhibited similar IVOC composition and volatility distribution to MGO exhaust,despite the differences between fuel contents.While WCO biodiesel could reduce IVOC emissions by 50%as compared to MGO,and thus reduced the SOA production from IVOCs.The compositions and volatility distributions of exhaust IVOCs varied to those of their fuels,implying that fuel-component-based SOA predicting model should be used with more cautions when assessing SOA production of WCO and MGO exhausts.WCO biodiesel is a cleaner fuel comparing to conventional MGO on ship auxiliary engines with regard to the reductions in gaseous IVOC emissions and corresponding SOA productions.Although the tests were conducted on test bench,the results could be considered as representative due to the widely applications of the test engine and MGO fuel on real-world ships.
基金This work was supported by the National Natural Science Foundation of China(No.51779047)the Excellent Youth Science Foundation of Heilongjiang Province(YQ2019E001).
文摘Neonicotinoid insecticides(NNIs)have been intensively used and exploited,resulting in their presence and accumulation in multiple environmental media.We herein investigated the current levels of eight major NNIs in the Harbin section of the Songhua River in northeast China,providing the first systematic report on NNIs in this region.At least four NNIs in water and three in sediment were detected,with total concentrations ranging from 30.8 to 135 ng L^(-1) and from 0.61 to 14.7 ng g^(-1) dw,respectively.Larger spatial variations in surface water NNIs concentrations were observed in tributary than mainstream(p<0.05)due to the intensive human activities(e.g.,horticulture,urban landscaping,and household pet flea control)and the discharge of wastewater from many treatment plants.There was a significant positive correlation(p<0.05)between the concentrations of residual imidacloprid(IMI),clothianidin(CLO),and S4NNIs in the sediment and total organic carbon(TOC).Due to its high solubility and low octanol-water partition coefficient(Kow),the sediment-water exchange behavior shows that NNIs in sediments can re-enter into the water body.Human exposure risk was assessed using the relative potency factor(RPF),which showed that infants have the highest exposure risk(estimated daily intake(SIMIeq EDI):31.9 ng kg^(-1) bw$d^(-1)).The concentration thresholds of NNIs for aquatic organisms in the Harbin section of the Songhua River were determined using the species sensitivity distribution(SSD)approach,resulting in a value of 355 ng L^(-1) for acute hazardous concentration for 5%of species(HC5)and 165 ng L^(-1) for chronic HC5.Aquatic organisms at low trophic levels were more vulnerable to potential harm from NNIs.
基金the National Natural Science Foundation of China(No.41401550)the Humanity and Social Science Youth Foundation of Ministry of Education of China(No.14YJCZH017)+4 种基金the Heilongjiang Post-Doctoral Financial Assistance of China(No.LBH-Z13029)the Scientific Research Fund of Heilongjiang Provincial Education Department(No.12541123)the Young Talents Project of Northeast Agricultural University(No.14QC49)the Natural Science Foundation of Heilongjiang Province(No.QC2016054)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2016001).
文摘In order to investigate the transfer and migration behavior of polycyclic aromatic hydrocarbons(PAHs)in soil with long-term wastewater irrigation,Groundwater Ubiquity Score(GUS)and fugacity method were respectively used to assess the potential entry into the groundwater and transfer capacity of PAHs.The results of assessment using GUS show that there is significant correlation between the GUS and organic carbon sorption coefficient(KOC)for PAHs and a simple assessment method with KOC was referred to evaluate contamination of groundwater.Applying fugacity method,evaluation results of transfer and migration of PAHs in soil suggest that the PAHs accumulation in the soil through long-term wastewater irrigation could be re-volatilized as secondary emission sources to atmosphere for the Low Molecular Weight(LMW)PAHs,in contrast to High Molecular Weight(HMW)PAHs for which the soil remains a sink that could absorb more PAHs.The net volatilisation flux was 0.39 g/d in upland and 0.32 g/d in paddy for LMW Nap(Naphthalene),and 0.97×10^(-3)g/d in upland and 0.37×10^(-3)g/d in paddy for LMW Phe(Phenanthrene).The net deposition was 0.72×10^(-4)g/d in upland and 0.10×10^(-3)g/d in paddy for HMW Fla(Fluoranthene),and 0.22×10^(-4)g/d in upland and 0.20×10^(-4)g/d in paddy for HMW Bap(Benzo[a]pyrene).Sensitivities of the model estimates to input parameters were tested,and the sensitivity coefficient was defined for the test.The most influential parameters were the volumes of the air,water,and organic carbon fractions in soil and the thickness of the soil.
文摘This paper reviews the usage and emissions of endosulfan, the newest member of the persistent organic pollutants (POPs), in China, and its fate and behavior in Chinese environment. Endosulfan usage in China has been estimated to be approximately 25700 t between 1994 and 2004. Concentrations of endosulfan in different environ- mental compartments in China, such as air, soil, water, and biota, but focusing at air and surface soil, have been summarized. Concentrations of total endosulfan in surface soil across China were ranged from below detection limit (BDL) to 19000 pg.g^-1 dry weight (dw), with geometric mean of 120pg.g^-1dw. The results indicated that endo- sulfan sulfate had highest concentration in Chinese soil, followed by r- and α-endosulfan. Air concentrations of endosulfan in China were ranged 0-340 pg.m3 for a- endosulfan and 0-121 pg. m--3 for β-endosulfan, with high concentrations occurred in the cotton production areas. Gridded usage inventories of endosulfan on a fine gridded system with a 1/4° longitude by 1/6° latitude resolution were compiled, from which, emission to air and residues in soil of endosulfan were calculated in each grid by using a modified simplified gridded pesticide emission and residue model (SGPERM), an integrated modeling system combining mathematical model, database management system, and geographic information system. Total emissions were around 10800 t from 1994 to 2004. Based on the emission and residue inventories, concentrations of α- and β- endosulfan in Chinese air and agricultural surface soil were also calculated for each grid cell, which are in general consistent with the published monitoring data.