Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures ...Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.展开更多
1.Objectives The Tiechang tin deposit is located in the northern part of the Baoshan Terrane of the Sanjiang Tethys Orogeny in western Yunnan Province of China.Tiechang tin deposit mainly occurs in the migmatite accom...1.Objectives The Tiechang tin deposit is located in the northern part of the Baoshan Terrane of the Sanjiang Tethys Orogeny in western Yunnan Province of China.Tiechang tin deposit mainly occurs in the migmatite accompany with the structural fracture zone,and only a few of them occur in the internal contact zone between metamorphic rock and migmatite or in the interlayer fracture zone in metamorphic rock(Fig.1;Lei YA et al.,2013).Different from most tin deposits(such as Lailishan deposit at 47 Ma;Xiaolonghe deposit at 71 Ma;Tieyaoshan deposit at 119 Ma;Chen XC et al.,2014)in western Yunnan,the mineralization of Tiechang tin deposit occured in Oligocene.Therefore,the metallogenic chronology of tin deposits in western Yunnan needs to be further improved.In this paper,the authors use the cassiterite U-Pb LA-ICP-MS method to determine the metallogenic age of the Tiechang tin deposit.展开更多
The identification of anomalies within stream sediment geochemical data is one of the fastest developing areas in mineral exploration.The various means used to achieve this objective make use of either continuous or d...The identification of anomalies within stream sediment geochemical data is one of the fastest developing areas in mineral exploration.The various means used to achieve this objective make use of either continuous or discrete field models of stream sediment geochemical data.To map anomalies in a discrete field model of such data,two corrections are required:background correction and downstream dilution correction.Topography and geomorphology are important factors in variations of element content in stream sediments.However,few studies have considered,through the use of digital terrain analysis,the influence of geomorphic features in downstream dilution correction of stream sediment geochemical data.This study proposes and demonstrates an improvement to the traditional downstream dilution correction equation,based on the use of digital terrain analysis to map single-element anomalies in stream sediment geochemical landscapes.Moreover,this study compares the results of analyses using discrete and continuous field models of stream sediment geochemical data from the Xincang area,Tibet.The efficiency of the proposed methodology was validated against known mineral occurrences.The results indicate that catchment-based analysis outperforms interpolation-based analysis of stream sediment geochemical data for anomaly mapping.Meanwhile,the proposed modified downstream dilution correction equation proved more effective than the original equation.However,further testing of this modified downstream dilution correction is needed in other areas,in order to investigate its efficiency further.展开更多
With the decrease in surface and shallow ore deposits,mineral exploration has focused on deeply buried ore bodies,and large-scale metallogenic prediction presents new opportunities and challenges.This paper adopts the...With the decrease in surface and shallow ore deposits,mineral exploration has focused on deeply buried ore bodies,and large-scale metallogenic prediction presents new opportunities and challenges.This paper adopts the predictive thinking method in this era of big data combined with specific research on the special exploration and exploitation of deep-earth resources.Four basic theoretical models of large-scale deep mineralization prediction and evaluation are explored:mineral prediction geological model theory,multidisciplinary information correlation theory,mineral regional trend analysis theory,and mineral prediction geological differentiation theory.The main workflow of large-scale deep resource prediction in the digital and information age is summarized,including construction of ore prospecting models of metallogenic systems,multiscale 3 D geological modeling,and 3 D quantitative prediction of deep resources.Taking the Lala copper mine in Sichuan Province as an example,this paper carries out deep 3 D quantitative prediction of mineral resources and makes a positive contribution to the future prediction and evaluation of mineral resources.展开更多
基金the National Natural Science Foundation of China(Grant Nos.41772043 and 41802043)the Chinese Academy of Sciences“Light of West China”Program(Dawei Fan,2017 and Jingui Xu,2019)+1 种基金the Youth Innovation Promotion Association CAS(Dawei Fan,2018434)the Innovation and Entrepreneurship Funding of High-Level Overseas Talents of Guizhou Province(Dawei Fan,[2019]10).
文摘Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.
基金supported by the National Key Research and Development Program of China(2018YFC0603704)project of the China Geological Survey(DD20190166,DD20190159).
文摘1.Objectives The Tiechang tin deposit is located in the northern part of the Baoshan Terrane of the Sanjiang Tethys Orogeny in western Yunnan Province of China.Tiechang tin deposit mainly occurs in the migmatite accompany with the structural fracture zone,and only a few of them occur in the internal contact zone between metamorphic rock and migmatite or in the interlayer fracture zone in metamorphic rock(Fig.1;Lei YA et al.,2013).Different from most tin deposits(such as Lailishan deposit at 47 Ma;Xiaolonghe deposit at 71 Ma;Tieyaoshan deposit at 119 Ma;Chen XC et al.,2014)in western Yunnan,the mineralization of Tiechang tin deposit occured in Oligocene.Therefore,the metallogenic chronology of tin deposits in western Yunnan needs to be further improved.In this paper,the authors use the cassiterite U-Pb LA-ICP-MS method to determine the metallogenic age of the Tiechang tin deposit.
基金financially supported by the National Natural Science Foundation of China(NNSFC,Project No.42002298)the Chinese Geological Survey(Project Nos.DD20201181,DD20211403)+1 种基金the National Key Research and Development Program of China(NKRDPC,Project No.2017YFC0601501)funded by The Project of"Big Data Analysis and Major Project Evaluation of Strategic Mineral Resources"from the Chinese Geological Survey。
文摘The identification of anomalies within stream sediment geochemical data is one of the fastest developing areas in mineral exploration.The various means used to achieve this objective make use of either continuous or discrete field models of stream sediment geochemical data.To map anomalies in a discrete field model of such data,two corrections are required:background correction and downstream dilution correction.Topography and geomorphology are important factors in variations of element content in stream sediments.However,few studies have considered,through the use of digital terrain analysis,the influence of geomorphic features in downstream dilution correction of stream sediment geochemical data.This study proposes and demonstrates an improvement to the traditional downstream dilution correction equation,based on the use of digital terrain analysis to map single-element anomalies in stream sediment geochemical landscapes.Moreover,this study compares the results of analyses using discrete and continuous field models of stream sediment geochemical data from the Xincang area,Tibet.The efficiency of the proposed methodology was validated against known mineral occurrences.The results indicate that catchment-based analysis outperforms interpolation-based analysis of stream sediment geochemical data for anomaly mapping.Meanwhile,the proposed modified downstream dilution correction equation proved more effective than the original equation.However,further testing of this modified downstream dilution correction is needed in other areas,in order to investigate its efficiency further.
基金financially supported by the National Natural Science Foundation of China(No.42002298)the National Key Research and Development Program of China(No.2017YFC0601501)+1 种基金China Geological Survey(No.DD20201181)the Open Research Fund Program of the Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education(No.2020YSJS09)。
文摘With the decrease in surface and shallow ore deposits,mineral exploration has focused on deeply buried ore bodies,and large-scale metallogenic prediction presents new opportunities and challenges.This paper adopts the predictive thinking method in this era of big data combined with specific research on the special exploration and exploitation of deep-earth resources.Four basic theoretical models of large-scale deep mineralization prediction and evaluation are explored:mineral prediction geological model theory,multidisciplinary information correlation theory,mineral regional trend analysis theory,and mineral prediction geological differentiation theory.The main workflow of large-scale deep resource prediction in the digital and information age is summarized,including construction of ore prospecting models of metallogenic systems,multiscale 3 D geological modeling,and 3 D quantitative prediction of deep resources.Taking the Lala copper mine in Sichuan Province as an example,this paper carries out deep 3 D quantitative prediction of mineral resources and makes a positive contribution to the future prediction and evaluation of mineral resources.