The evolution of the charge density distribution function is simulated for both the case of a uniformly charged sphere with zero initial conditions and for the case of a non-uniform charged sphere. For the case of a u...The evolution of the charge density distribution function is simulated for both the case of a uniformly charged sphere with zero initial conditions and for the case of a non-uniform charged sphere. For the case of a uniformly charged sphere the comparison of a numerical result and an exact analytical demonstrated the agreement between the results. The process of “scattering” of a charged system under the influence of its own electric field has been illustrated on the basis of both the particle-in-cell method and the solution of the Cauchy problem for vector functions of the electric field and vector velocity field of a charged medium.展开更多
文摘The evolution of the charge density distribution function is simulated for both the case of a uniformly charged sphere with zero initial conditions and for the case of a non-uniform charged sphere. For the case of a uniformly charged sphere the comparison of a numerical result and an exact analytical demonstrated the agreement between the results. The process of “scattering” of a charged system under the influence of its own electric field has been illustrated on the basis of both the particle-in-cell method and the solution of the Cauchy problem for vector functions of the electric field and vector velocity field of a charged medium.