Static cosmology has been abandoned almost a century ago because of phenomena which were unexplained at those times. However, that scenario can be revived with the modern findings of gravitational forces, coming from ...Static cosmology has been abandoned almost a century ago because of phenomena which were unexplained at those times. However, that scenario can be revived with the modern findings of gravitational forces, coming from outside of the “luminous world”, tugging on our universe. These unexplained phenomena were: the redshift, the CMB, and Olbers’ paradox. All these can now be explained, as done in the present manuscript. 1) The observed redshift, which is commonly attributed to the Doppler effect, can also be explained as a gravitational redshift. Thus, the universe is not expanding, as has also been described in recent publications, thereby, making the “Big Bang” hypothesis unnecessary. 2) Gravitation is induced by matter, and at least some of the distant matter is expected to be luminous. That electro-magnetic emission is extremely redshifted, and thus perceived by us as CMB. CMB is not necessarily a historic remnant related to the “Big Bang”, rather it is the redshifted light, coming from extremely distant luminous matter. 3) According to Olbers’ paradox, the night sky is expected to be bright. The sky looks dark because the light coming from extremely faraway light sources, out of our visible universe, is extremely redshifted. Therefore it is perceived by us as CMB. As in the cosmological literature many problems with the “Big Bang” hypothesis have been described, where as the problems with the static universe model are resolved in the present manuscript, the static state scenario should be renovated.展开更多
Quarks move within the nucleon at relativistic speeds. This causes intertia. This inertia results in gravitational mass-effect. For short distances this is the strong force, for distant objects it is gravity. This is ...Quarks move within the nucleon at relativistic speeds. This causes intertia. This inertia results in gravitational mass-effect. For short distances this is the strong force, for distant objects it is gravity. This is due to an increase in the gravitational constant related to the velocity of objects moving at speeds close to the speed of light. This relation is calculable with a formula presented in the text.展开更多
There are controversies and misunderstandings with the term “relativistic mass”. So, alternative concepts must be considered. It is postulated herewith that the stronger force required to accelerate an object moving...There are controversies and misunderstandings with the term “relativistic mass”. So, alternative concepts must be considered. It is postulated herewith that the stronger force required to accelerate an object moving at a faster speed is due to the increase of its inertia. That ensues in a rise in the gravitational force required to pull that object, and thereby brings to an increase in the gravitational constant. In this paper a formula is derived to calculate these variations in the gravitational constant, which is: . This makes the use of the term “relativistic mass” unnecessary.展开更多
Quark movement is almost by the speed of light. Due to this speed their inertial mass-effect increases profoundly. That inertial effect is an accelerating force. Within the nucleon the force is the strong force. As qu...Quark movement is almost by the speed of light. Due to this speed their inertial mass-effect increases profoundly. That inertial effect is an accelerating force. Within the nucleon the force is the strong force. As quarks movements are back and forth movements, called zigzag or oscillating movements, there is movement in opposite directions. So the oppositely acting forces annihilate each other. However the force acting on objects receding from each other is a trifle stronger than that acting on objects approaching each other. This small difference between these forces is a “left over” force and “leaks” out of the nucleon. In previous manuscripts, formulae were presented to calculate these forces. In the present paper the “left over”, “leaking” force is estimated, and this force is gravity.展开更多
文摘Static cosmology has been abandoned almost a century ago because of phenomena which were unexplained at those times. However, that scenario can be revived with the modern findings of gravitational forces, coming from outside of the “luminous world”, tugging on our universe. These unexplained phenomena were: the redshift, the CMB, and Olbers’ paradox. All these can now be explained, as done in the present manuscript. 1) The observed redshift, which is commonly attributed to the Doppler effect, can also be explained as a gravitational redshift. Thus, the universe is not expanding, as has also been described in recent publications, thereby, making the “Big Bang” hypothesis unnecessary. 2) Gravitation is induced by matter, and at least some of the distant matter is expected to be luminous. That electro-magnetic emission is extremely redshifted, and thus perceived by us as CMB. CMB is not necessarily a historic remnant related to the “Big Bang”, rather it is the redshifted light, coming from extremely distant luminous matter. 3) According to Olbers’ paradox, the night sky is expected to be bright. The sky looks dark because the light coming from extremely faraway light sources, out of our visible universe, is extremely redshifted. Therefore it is perceived by us as CMB. As in the cosmological literature many problems with the “Big Bang” hypothesis have been described, where as the problems with the static universe model are resolved in the present manuscript, the static state scenario should be renovated.
文摘Quarks move within the nucleon at relativistic speeds. This causes intertia. This inertia results in gravitational mass-effect. For short distances this is the strong force, for distant objects it is gravity. This is due to an increase in the gravitational constant related to the velocity of objects moving at speeds close to the speed of light. This relation is calculable with a formula presented in the text.
文摘There are controversies and misunderstandings with the term “relativistic mass”. So, alternative concepts must be considered. It is postulated herewith that the stronger force required to accelerate an object moving at a faster speed is due to the increase of its inertia. That ensues in a rise in the gravitational force required to pull that object, and thereby brings to an increase in the gravitational constant. In this paper a formula is derived to calculate these variations in the gravitational constant, which is: . This makes the use of the term “relativistic mass” unnecessary.
文摘Quark movement is almost by the speed of light. Due to this speed their inertial mass-effect increases profoundly. That inertial effect is an accelerating force. Within the nucleon the force is the strong force. As quarks movements are back and forth movements, called zigzag or oscillating movements, there is movement in opposite directions. So the oppositely acting forces annihilate each other. However the force acting on objects receding from each other is a trifle stronger than that acting on objects approaching each other. This small difference between these forces is a “left over” force and “leaks” out of the nucleon. In previous manuscripts, formulae were presented to calculate these forces. In the present paper the “left over”, “leaking” force is estimated, and this force is gravity.