Unlike the classical phase transition driven by thermal fluctuations,the quantum phase transition arises at zero temperature when the system is tuned by a non-thermal parameter[1].For a continuous quantum phase transi...Unlike the classical phase transition driven by thermal fluctuations,the quantum phase transition arises at zero temperature when the system is tuned by a non-thermal parameter[1].For a continuous quantum phase transition,novel physics with higher symmetry may emerge at the quantum critical point(QCP).展开更多
Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation,but limited by everchanging thicknesses arising from unstable interfaces.Herein,an interfacially s...Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation,but limited by everchanging thicknesses arising from unstable interfaces.Herein,an interfacially stable,thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework(MOF)nanosheets,which function via two cyclic amide-bearing polymers,thermo-responsive poly(N-vinyl caprolactam)(PVCL)for adjusting channel size,and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance.Owing to the microporosity of MOF nanosheets and controllable interface wettability,the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness.Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.展开更多
The safe,flexible,and environment-friendly Zn-ion batteries have aroused great interests nowadays.Nevertheless,flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection,wh...The safe,flexible,and environment-friendly Zn-ion batteries have aroused great interests nowadays.Nevertheless,flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection,which severely impedes the future applications of Zn-ion batteries especially at high current densities.Gel electrolytes are emerging to tackle this issue,yet the required high modulus for inhibiting dendrite growth as well as concurrent poor interfacial contact with roughened Zn electrodes are not easily reconcilable to regulate the fragile Zn/Zn^(2+) interface.Here we demonstrate,such a conflict may be defeated by using a mechanoadaptive cellulose nanofibril-based morphing gel electrolyte(MorphGE),which synergizes bulk compliance for optimizing interfacial contact as well as high modulus for suppressing dendrite formation.Moreover,by anchoring desolvated Zn^(2+) on cellulose nanofibrils,the side reactions which induce dendrite formation are also significantly reduced.As a result,the MorphGE-based symmetrical Zn-ion battery demonstrated outstanding stability for more than 100 h at the high current density of 10 mA·cm^(−2) and areal capacity of 10 mA·h·cm^(−2),and the corresponding Zn-ion battery delivered a prominent specific capacity of 100 mA·h·g^(−1) for more than 500 cycles at 20 C.The present example of engineering the mechanoadaptivity of gel electrolytes will shed light on a new pathway for designing highly safe and flexible energy storage devices.展开更多
Light management is essential for military stealth,optical information communication,and energy-efficient buildings.However,current light management materials face challenges of limited optical modulation range and po...Light management is essential for military stealth,optical information communication,and energy-efficient buildings.However,current light management materials face challenges of limited optical modulation range and poor mechanical properties.Herein,we report a locally confined polymerization(LCP)approach to develop hierarchical network-augmented hydroglasses(HNAH)based on poly(methacrylic acid)for broadband light management as well as mechanical enhancement.The dynamic geometry of the networks ranging from nano-to micro-scale enables to manage the light wavelength over three orders of magnitude,from the ultraviolet(UV)to infrared(IR)band,and reversibly switches transmittance in the visible region.A smart hydroglass window is developed with elasticity,outstanding robustness,self-healing,notch resistance,biosafety by blocking UV radiation,and high solar energy shielding efficacy with a temperature drop of 13℃.Compared to current inorganic glasses and Plexiglas,the hydroglass not only is a promising and versatile candidate but also provides novel insights into the molecular and structural design of broadband light management and optimized mechanical properties.展开更多
We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum flu...We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum fluctuations.This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap.In the high field regime where the quantum fluctuations are largely suppressed,we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity.Through detailed semi-classical calculations,we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.展开更多
基金supported by the National Natural Science Foundation of China(U2032213(J.M.),12274288(X.W.and J.W.))the Innovation Program for Quantum Science and Technology(2021ZD0301900(X.W.and J.W.),2022YFA1402702(J.M.))+1 种基金the Natural Science Foundation of Shanghai(20ZR1428400),Shanghai Pujiang Program(20PJ1408100(X.W.and J.W.))Grants-in-Aid for Scientific Research(25220803 and 24244059)from MEXT.
文摘Unlike the classical phase transition driven by thermal fluctuations,the quantum phase transition arises at zero temperature when the system is tuned by a non-thermal parameter[1].For a continuous quantum phase transition,novel physics with higher symmetry may emerge at the quantum critical point(QCP).
基金support from the National Natural Science Foundation of China(Nos.21991123,51733003,21674025,and 51873035)“Qimingxing”project(No.19QA1400200)of the Shanghai Committee of Science and Technology.
文摘Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation,but limited by everchanging thicknesses arising from unstable interfaces.Herein,an interfacially stable,thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework(MOF)nanosheets,which function via two cyclic amide-bearing polymers,thermo-responsive poly(N-vinyl caprolactam)(PVCL)for adjusting channel size,and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance.Owing to the microporosity of MOF nanosheets and controllable interface wettability,the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness.Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.
基金the National Science Foundation of China(NSFC)(Nos.51903041,21991123,and 51873035)Natural Science Foundation of Shanghai(No.19ZR1470700)“Qimingxing Plan”(No.19QA1400200).
文摘The safe,flexible,and environment-friendly Zn-ion batteries have aroused great interests nowadays.Nevertheless,flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection,which severely impedes the future applications of Zn-ion batteries especially at high current densities.Gel electrolytes are emerging to tackle this issue,yet the required high modulus for inhibiting dendrite growth as well as concurrent poor interfacial contact with roughened Zn electrodes are not easily reconcilable to regulate the fragile Zn/Zn^(2+) interface.Here we demonstrate,such a conflict may be defeated by using a mechanoadaptive cellulose nanofibril-based morphing gel electrolyte(MorphGE),which synergizes bulk compliance for optimizing interfacial contact as well as high modulus for suppressing dendrite formation.Moreover,by anchoring desolvated Zn^(2+) on cellulose nanofibrils,the side reactions which induce dendrite formation are also significantly reduced.As a result,the MorphGE-based symmetrical Zn-ion battery demonstrated outstanding stability for more than 100 h at the high current density of 10 mA·cm^(−2) and areal capacity of 10 mA·h·cm^(−2),and the corresponding Zn-ion battery delivered a prominent specific capacity of 100 mA·h·g^(−1) for more than 500 cycles at 20 C.The present example of engineering the mechanoadaptivity of gel electrolytes will shed light on a new pathway for designing highly safe and flexible energy storage devices.
基金support from the National Natural Science Foundation of China(Nos.51973035 and 51733003)。
文摘Light management is essential for military stealth,optical information communication,and energy-efficient buildings.However,current light management materials face challenges of limited optical modulation range and poor mechanical properties.Herein,we report a locally confined polymerization(LCP)approach to develop hierarchical network-augmented hydroglasses(HNAH)based on poly(methacrylic acid)for broadband light management as well as mechanical enhancement.The dynamic geometry of the networks ranging from nano-to micro-scale enables to manage the light wavelength over three orders of magnitude,from the ultraviolet(UV)to infrared(IR)band,and reversibly switches transmittance in the visible region.A smart hydroglass window is developed with elasticity,outstanding robustness,self-healing,notch resistance,biosafety by blocking UV radiation,and high solar energy shielding efficacy with a temperature drop of 13℃.Compared to current inorganic glasses and Plexiglas,the hydroglass not only is a promising and versatile candidate but also provides novel insights into the molecular and structural design of broadband light management and optimized mechanical properties.
基金supported by the Innovation Program of Shanghai Municipal Education Commission(2017–01-07–00-07-E00018)the National Key R&D Program of the MOST of China(2016YFA0300203,2016YFA0300500,2016YFA0301001,and 2018YFE0103200)+6 种基金the National Natural Science Foundation of China(11874119)Shanghai Municipal Science and Technology Major Project(2019SHZDZX04)the Hong Kong Research Grants Council(17303819 and 17306520)supported by the National Natural Science Foundation of China(11875265)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(3He based neutron polarization devices)the Institute of High Energy Physicsthe Chinese Academy of Sciences。
文摘We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum fluctuations.This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap.In the high field regime where the quantum fluctuations are largely suppressed,we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity.Through detailed semi-classical calculations,we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.