期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
感性城市 2010上海世博会法国馆 被引量:2
1
作者 王峤 《时代建筑》 2009年第4期94-95,共2页
2010上海世博会法国馆是人和城市关系乐观前景的载体,尝试为现代人找到在科技不断进步的城市中更好的生活方式。法国馆建筑设计的三个特色是立面混凝土网架,镜面的水池以及立体花园。
关键词 法国 人和城市 网架 立体花园 感官
下载PDF
A PRELIMINARY ANALYSIS ON THE CHARACTERISTICS OF THE KUROSHIO FRONTAL EDDY IN THE EAST CHINA SEA IN SPRING
2
作者 郑义芳 黄卫民 Nakamura Yasuaki 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1993年第3期276-284,289,共10页
The Kuroshi’o front eddy’s surface and sectional isothermal distribution characteristics were analyzed on the basis of observation data obtained in April 13-16 of 1989 in the East China Sea. It was found from the si... The Kuroshi’o front eddy’s surface and sectional isothermal distribution characteristics were analyzed on the basis of observation data obtained in April 13-16 of 1989 in the East China Sea. It was found from the similarity between these isothermal distributions with those in January and beginning of June for the years 1986-1990 that the Kuroshio front eddy often occurred from March to the beginning of June. The Kuroshio front eddy movement in the East China Sea in spring was along two routes: the Okinawa Trough route, and the continental shelf slope route. The two moving routes both in the surface layer and in the section are described, their causes are discussed, and differences are compared. 展开更多
关键词 KUROSHIO FRONT eddy. KUROSHIO WARM FILAMENT WARM water EDDY
下载PDF
Autonomous Changes in the Concentration of Water Vapor Drive Climate Change
3
作者 William A. Van Brunt 《Atmospheric and Climate Sciences》 2020年第4期443-508,共66页
When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate ch... When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate change can accurately replicate the significant variability in the annual temperature record. Therefore, new principles of atmospheric physics are developed for determining changes in the average annual global temperature based on changes in the average atmospheric concentration of water vapor. These new principles prove that: 1) Changes in average global temperature are not driven by changes in the concentration of carbon dioxide;2) Instead, autonomous changes in the concentration of water vapor, <span style="white-space:nowrap;">Δ</span>TPW, drive changes in water vapor heating, thus, the average global temperature, <span style="white-space:nowrap;">Δ</span>T<sub>Avg</sub>, in accordance with this principle, <span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>T</span><span style="white-space:normal;"><sub>Avg</sub>=0.4<span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>TPW </span></span>the average accuracy of which is ±0.14%, when compared to the variable annual, 1880-2019, temperature record;3) Changes in the concentration of water vapor and changes in water vapor heating are not a feedback response to changes in the concentration of CO<sub>2</sub>;4) Rather, increases in water vapor heating and increases in the concentration of water vapor drive each other in an autonomous positive feedback loop;5) This feedback loop can be brought to a halt if the average global rate of precipitation can be brought into balance with the average global rate of evaporation and maintained there;and, 6) The recent increases in average global temperature can be reversed, if average global precipitation can be increased sufficiently to slightly exceed the average rate of evaporation. 展开更多
关键词 Carbon Dioxide Climate Change Water Vapor Global Warming DRIVER Average Global Temperature Change in Concentration Water Vapor Water Vapor Heating
下载PDF
Erratum to “Autonomous Changes in the Concentration of Water Vapor Drive Climate Change” [Atmospheric and Climate Sciences 10 (2020) 443-508]
4
作者 William Van Brunt 《Atmospheric and Climate Sciences》 2021年第3期535-546,共12页
<p> A. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Changes </span></span></span><... <p> A. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Changes </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> average global temperature are not driven by changes in the concentration of carbon dioxide;</span></span></span></span> </p> <p> <span style="font-family:Verdana;">B. </span><span style="font-family:Verdana;">Instead, autonomous changes in the concentration of water vapor, </span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;">TPW, </span><span color:black;"=""><span style="font-family:Verdana;">drive changes in water vapor heating, thus, </span><span style="background:#C00000;font-family:Verdana;">changes in</span><span style="font-family:Verdana;"> the average global temperature, </span></span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;"><i>T</i></span><span style="font-family:Verdana;"><sub>Avg</sub></span><span color:black;"=""><span style="font-family:Verdana;">, </span><span style="background:#C00000;font-family:Verdana;">in deg. Celsius are calculated</span><span style="font-family:Verdana;"> in accordance with this principle,</span></span> </p> <p style="text-align:center;margin-left:10pt;"> <span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"></span><img src="Edit_6e770969-a7c9-4192-a6ad-03de906a4d65.bmp" alt="" /><br /> </span></span></span> </p> <p align="center" style="margin-left:10.0pt;text-align:center;"> <span><span><span style="font-family:;" "=""><span></span></span></span><span><span><span style="font-family:" color:black;"=""></span></span></span></span> </p> <p> <span><span><span style="font-family:" color:black;background:#c00000;"=""><span style="font-family:Verdana;">measured in kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>m</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>2</span></sup><span style="font-family:Verdana;">,</span></span></span></span><span><span><span style="font-family:" color:black;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the average accuracy of which is ±0.14%, when compared to the variable annual, 1880 </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> 2019, </span><span style="background:#C00000;font-family:Verdana;">average global </span><span style="font-family:Verdana;">temperature record;</span></span></span></span> </p> 展开更多
关键词 Carbon Dioxide Climate Change Water Vapor Global Warming DRIVER Average Global Temperature Change in Concentration Water Vapor Water Vapor Heating
下载PDF
北京法国国际学校
5
作者 马琴 宋焱 杨丽家 《建筑学报》 CSSCI 北大核心 2018年第7期72-77,共6页
Chaoyang,Beijing地点/北京朝阳设计/2009年/竣工/2016年Design Stage 2009 Completion 2016业主北京法国国际学校设计团队王文宇、陈明、王耀堂、王则慧、李莹、向波、曹磊、刘征峥、高治(景观)、高伟(景观)、郭晓明(室内)、魏... Chaoyang,Beijing地点/北京朝阳设计/2009年/竣工/2016年Design Stage 2009 Completion 2016业主北京法国国际学校设计团队王文宇、陈明、王耀堂、王则慧、李莹、向波、曹磊、刘征峥、高治(景观)、高伟(景观)、郭晓明(室内)、魏黎(室内)基地面积3.8 hm^2建筑面积2万m^2结构形式框架结构摄影张广源(除标注外). 展开更多
关键词 教学楼 架空层 国际学校 细部构造 资料室 幼儿园
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部