Purpose: This paper relates the definition of data quality procedures for knowledge organizations such as Higher Education Institutions. The main purpose is to present the flexible approach developed for monitoring th...Purpose: This paper relates the definition of data quality procedures for knowledge organizations such as Higher Education Institutions. The main purpose is to present the flexible approach developed for monitoring the data quality of the European Tertiary Education Register(ETER) database, illustrating its functioning and highlighting the main challenges that still have to be faced in this domain.Design/methodology/approach: The proposed data quality methodology is based on two kinds of checks, one to assess the consistency of cross-sectional data and the other to evaluate the stability of multiannual data. This methodology has an operational and empirical orientation. This means that the proposed checks do not assume any theoretical distribution for the determination of the threshold parameters that identify potential outliers, inconsistencies, and errors in the data. Findings: We show that the proposed cross-sectional checks and multiannual checks are helpful to identify outliers, extreme observations and to detect ontological inconsistencies not described in the available meta-data. For this reason, they may be a useful complement to integrate the processing of the available information.Research limitations: The coverage of the study is limited to European Higher Education Institutions. The cross-sectional and multiannual checks are not yet completely integrated.Practical implications: The consideration of the quality of the available data and information is important to enhance data quality-aware empirical investigations, highlighting problems, and areas where to invest for improving the coverage and interoperability of data in future data collection initiatives.Originality/value: The data-driven quality checks proposed in this paper may be useful as a reference for building and monitoring the data quality of new databases or of existing databases available for other countries or systems characterized by high heterogeneity and complexity of the units of analysis without relying on pre-specified theoretical distributions.展开更多
We describe four fundamental challenges that complex real-life Virtual Reality (VR) productions are facing today (such as multi-camera management, quality control, automatic annotation with cinematography and 360&...We describe four fundamental challenges that complex real-life Virtual Reality (VR) productions are facing today (such as multi-camera management, quality control, automatic annotation with cinematography and 360˚?depth estimation) and describe an integrated solution, called Hyper 360, to address them. We demonstrate our solution and its evaluation in the context of practical productions and present related results.展开更多
The study focuses on the in flue nee of Ni and Bi on alkali me etha nol oxidati on reacti on (EOR) activities, stabilities and structure characteristics of carb on supported Pd-based nano catalysts (Pd/C, Pd6oNi4o/C, ...The study focuses on the in flue nee of Ni and Bi on alkali me etha nol oxidati on reacti on (EOR) activities, stabilities and structure characteristics of carb on supported Pd-based nano catalysts (Pd/C, Pd6oNi4o/C, Pd6oBi4o/C, Pd6oNi2oBi2o/C) by cyclic voltammetry/chr ono amperometry using rotating disk electrode and various physico-chemical methods such as X-ray powder diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy coupled with energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometry. Nickel generates more adsorbed OH on the Pd catalyst surface than Bi and promotes the oxidation of adsorbed ethanol species. This results in a low onset potential toward ethanol oxidation with high current density. The presenee of Bi facilitates high toleranee toward various reaction in termediates resulting from the incomplete etha nol oxidation, but might also initiate the agglomerati on of Pd nano particles. The no vel Pd60Ni20Bi20/C nanocatalyst displays exceptional byproduct toleranee, but only satisfying catalytic activity toward ethanol oxidation in an alkaline medium. Therefore, the EOR performanee of the novel carbon supported ternary PdxNiyBiz anode catalyst with various atomic variations (Pd70Ni25Bi5/C, Pd70Ni20Bi10/C, Pd80Ni10Bi10/C and Pd40Ni20Bi40/C) using the common instant reduction synthesis method was further optimized for the alkaline direct ethanol fuel cell. The carbon supported Pd:Ni:Bi nano catalyst with atomic ratio of 70:20:10 displays outsta nding catalytic activity for the alkaline EOR compared to the other PdxNiyBiy/C nanocatalysts as well as to the benchmarks Pd/C, Pd60Ni40/C and Pd60Bi40/C. The synergy and the optimal content in consideration of the oxide species of Pd, Ni and Bi are crucial for the EOR kinetic enhancement in alkaline medium.展开更多
Besides their direct impact on the respective correlated color temperature, the extinction coefficient and the quantum effi- ciency of the phosphor also have tremendous impact on the thermal load of the color conversi...Besides their direct impact on the respective correlated color temperature, the extinction coefficient and the quantum effi- ciency of the phosphor also have tremendous impact on the thermal load of the color conversion elements of phosphor converted LEDs under operation. Because of the low thermal conductivity of the silicone matrix in which the phosphor particles are typically embedded, the by far highest temperatures within the LED assembly are reached within the color conversion element. Based on a combined optical and thermal simulation procedure we show that in particular a larger value for the extinction coefficient might have a beneficial impact on the resulting thermal load.展开更多
基金support of the European Commission ETER Project (No. 934533-2017-AO8-CH)H2020 RISIS 2 project (No. 824091)。
文摘Purpose: This paper relates the definition of data quality procedures for knowledge organizations such as Higher Education Institutions. The main purpose is to present the flexible approach developed for monitoring the data quality of the European Tertiary Education Register(ETER) database, illustrating its functioning and highlighting the main challenges that still have to be faced in this domain.Design/methodology/approach: The proposed data quality methodology is based on two kinds of checks, one to assess the consistency of cross-sectional data and the other to evaluate the stability of multiannual data. This methodology has an operational and empirical orientation. This means that the proposed checks do not assume any theoretical distribution for the determination of the threshold parameters that identify potential outliers, inconsistencies, and errors in the data. Findings: We show that the proposed cross-sectional checks and multiannual checks are helpful to identify outliers, extreme observations and to detect ontological inconsistencies not described in the available meta-data. For this reason, they may be a useful complement to integrate the processing of the available information.Research limitations: The coverage of the study is limited to European Higher Education Institutions. The cross-sectional and multiannual checks are not yet completely integrated.Practical implications: The consideration of the quality of the available data and information is important to enhance data quality-aware empirical investigations, highlighting problems, and areas where to invest for improving the coverage and interoperability of data in future data collection initiatives.Originality/value: The data-driven quality checks proposed in this paper may be useful as a reference for building and monitoring the data quality of new databases or of existing databases available for other countries or systems characterized by high heterogeneity and complexity of the units of analysis without relying on pre-specified theoretical distributions.
基金funding from the European Union’s Horizon 2020 research and innovation programme,grant n°761934,Hyper 360(“Enriching 360 media with 3D storytelling and personalisation elements”).
文摘We describe four fundamental challenges that complex real-life Virtual Reality (VR) productions are facing today (such as multi-camera management, quality control, automatic annotation with cinematography and 360˚?depth estimation) and describe an integrated solution, called Hyper 360, to address them. We demonstrate our solution and its evaluation in the context of practical productions and present related results.
文摘The study focuses on the in flue nee of Ni and Bi on alkali me etha nol oxidati on reacti on (EOR) activities, stabilities and structure characteristics of carb on supported Pd-based nano catalysts (Pd/C, Pd6oNi4o/C, Pd6oBi4o/C, Pd6oNi2oBi2o/C) by cyclic voltammetry/chr ono amperometry using rotating disk electrode and various physico-chemical methods such as X-ray powder diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy coupled with energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometry. Nickel generates more adsorbed OH on the Pd catalyst surface than Bi and promotes the oxidation of adsorbed ethanol species. This results in a low onset potential toward ethanol oxidation with high current density. The presenee of Bi facilitates high toleranee toward various reaction in termediates resulting from the incomplete etha nol oxidation, but might also initiate the agglomerati on of Pd nano particles. The no vel Pd60Ni20Bi20/C nanocatalyst displays exceptional byproduct toleranee, but only satisfying catalytic activity toward ethanol oxidation in an alkaline medium. Therefore, the EOR performanee of the novel carbon supported ternary PdxNiyBiz anode catalyst with various atomic variations (Pd70Ni25Bi5/C, Pd70Ni20Bi10/C, Pd80Ni10Bi10/C and Pd40Ni20Bi40/C) using the common instant reduction synthesis method was further optimized for the alkaline direct ethanol fuel cell. The carbon supported Pd:Ni:Bi nano catalyst with atomic ratio of 70:20:10 displays outsta nding catalytic activity for the alkaline EOR compared to the other PdxNiyBiy/C nanocatalysts as well as to the benchmarks Pd/C, Pd60Ni40/C and Pd60Bi40/C. The synergy and the optimal content in consideration of the oxide species of Pd, Ni and Bi are crucial for the EOR kinetic enhancement in alkaline medium.
基金Project supported by the"Neue Energien 2020"Program of the Austrian Climate and Energy Fund(827784)
文摘Besides their direct impact on the respective correlated color temperature, the extinction coefficient and the quantum effi- ciency of the phosphor also have tremendous impact on the thermal load of the color conversion elements of phosphor converted LEDs under operation. Because of the low thermal conductivity of the silicone matrix in which the phosphor particles are typically embedded, the by far highest temperatures within the LED assembly are reached within the color conversion element. Based on a combined optical and thermal simulation procedure we show that in particular a larger value for the extinction coefficient might have a beneficial impact on the resulting thermal load.