AIM: To investigate the anti-neoplastic effects of MK615, an extract from the Japanese apricot (Prunus mume), against colon cancer cells. METHODS: Three colon cancer cell lines, SW480, COLO, and WiDr, were cultured wi...AIM: To investigate the anti-neoplastic effects of MK615, an extract from the Japanese apricot (Prunus mume), against colon cancer cells. METHODS: Three colon cancer cell lines, SW480, COLO, and WiDr, were cultured with MK615. Growth inhibition was evaluated by cell proliferation assay and killing activity was determined by lactate dehydrogenase assay. Induction of apoptosis was evaluated by annexin Ⅴ flow cytometry. Morphological changes were studied by light and electron microscopy, and immunofluorescence staining with Atg8. RESULTS: MK615 inhibited growth and lysed SW480, COLO and WiDr cells in a dose-dependent manner. Annexin Ⅴ flow cytometry showed that MK615 induced apoptosis after 6 h incubation, at which point the occurrence of apoptotic cells was 68.0%, 65.7% and 64.7% for SW480, COLO, and WiDr cells, respectively. Light and electron microscopy, and immunofluorescence staining with Atg8 revealed that MK615 induced massive cytoplasmic vacuoles (autophagosomes) in all three cell lines. CONCLUSION: MK615 has an anti-neoplastic effect against colon cancer cells. The effect may be exerted by induction of apoptosis and autophagy.展开更多
AIM:To investigate the anti-neoplastic effect of MK615, an anti-neoplastic compound isolated from Japanese apricot, against human pancreatic cancer cells in vitro. METHODS: Three human pancreatic cancer cell lines PAN...AIM:To investigate the anti-neoplastic effect of MK615, an anti-neoplastic compound isolated from Japanese apricot, against human pancreatic cancer cells in vitro. METHODS: Three human pancreatic cancer cell lines PANC-1, PK-1, and PK45H were cultured with MK615 at concentrations of 600, 300, 150, and 0 μg/mL. Growth inhibition was evaluated by cell proliferation assay, and killing activity was determined by lactate dehydrogenase (LDH) assay. Expression of Aurora A and B kinases was detected by real-time polymerase chain reaction (PCR) and Western blotting. Cell cycle stages were evaluated by flow cytometry. RESULTS: The growth inhibitory rates of MK615 at 150, 300, and 600 μg/mL were 2.3% ± 0.9%, 8.9% ± 3.2% and 67.1% ± 8.1% on PANC1 cells, 1.3% ± 0.3%, 8.7% ± 4.1% and 45.7 ± 7.6% on PK1 cells, and 1.2 ± 0.8%, 9.1% ± 2.1% and 52.1% ± 5.5% on PK45H cells, respectively (P <0.05). The percentage cytotoxicities of MK615 at 0, 150, 300, and 600 μg/mL were 19.6% ± 1.3%, 26.7% ± 1.8%, 25.5% ± 0.9% and 26.4% ± 0.9% in PANC1 cells, 19.7% ± 1.3%, 24.7% ± 0.8%, 25.9% ± 0.9% and 29.9% ± 1.1% in PK1 cells, and 28.0% ± 0.9%, 31.2% ± 0.9%, 30.4% ± 1.1% and 35.3 ± 1.0% in PK45H cells, respectively (P < 0.05). Real-time PCR and Western blotting showed that MK615 dually inhibited the expression of Aurora A and B kinases. Cell cycle analysis revealed that MK615 increased the population of cells in G2/M phase. CONCLUSION: MK615 exerts an anti-neoplastic effect on human pancreatic cancer cells in vitro by dual inhibition of Aurora A and B kinases.展开更多
文摘AIM: To investigate the anti-neoplastic effects of MK615, an extract from the Japanese apricot (Prunus mume), against colon cancer cells. METHODS: Three colon cancer cell lines, SW480, COLO, and WiDr, were cultured with MK615. Growth inhibition was evaluated by cell proliferation assay and killing activity was determined by lactate dehydrogenase assay. Induction of apoptosis was evaluated by annexin Ⅴ flow cytometry. Morphological changes were studied by light and electron microscopy, and immunofluorescence staining with Atg8. RESULTS: MK615 inhibited growth and lysed SW480, COLO and WiDr cells in a dose-dependent manner. Annexin Ⅴ flow cytometry showed that MK615 induced apoptosis after 6 h incubation, at which point the occurrence of apoptotic cells was 68.0%, 65.7% and 64.7% for SW480, COLO, and WiDr cells, respectively. Light and electron microscopy, and immunofluorescence staining with Atg8 revealed that MK615 induced massive cytoplasmic vacuoles (autophagosomes) in all three cell lines. CONCLUSION: MK615 has an anti-neoplastic effect against colon cancer cells. The effect may be exerted by induction of apoptosis and autophagy.
文摘AIM:To investigate the anti-neoplastic effect of MK615, an anti-neoplastic compound isolated from Japanese apricot, against human pancreatic cancer cells in vitro. METHODS: Three human pancreatic cancer cell lines PANC-1, PK-1, and PK45H were cultured with MK615 at concentrations of 600, 300, 150, and 0 μg/mL. Growth inhibition was evaluated by cell proliferation assay, and killing activity was determined by lactate dehydrogenase (LDH) assay. Expression of Aurora A and B kinases was detected by real-time polymerase chain reaction (PCR) and Western blotting. Cell cycle stages were evaluated by flow cytometry. RESULTS: The growth inhibitory rates of MK615 at 150, 300, and 600 μg/mL were 2.3% ± 0.9%, 8.9% ± 3.2% and 67.1% ± 8.1% on PANC1 cells, 1.3% ± 0.3%, 8.7% ± 4.1% and 45.7 ± 7.6% on PK1 cells, and 1.2 ± 0.8%, 9.1% ± 2.1% and 52.1% ± 5.5% on PK45H cells, respectively (P <0.05). The percentage cytotoxicities of MK615 at 0, 150, 300, and 600 μg/mL were 19.6% ± 1.3%, 26.7% ± 1.8%, 25.5% ± 0.9% and 26.4% ± 0.9% in PANC1 cells, 19.7% ± 1.3%, 24.7% ± 0.8%, 25.9% ± 0.9% and 29.9% ± 1.1% in PK1 cells, and 28.0% ± 0.9%, 31.2% ± 0.9%, 30.4% ± 1.1% and 35.3 ± 1.0% in PK45H cells, respectively (P < 0.05). Real-time PCR and Western blotting showed that MK615 dually inhibited the expression of Aurora A and B kinases. Cell cycle analysis revealed that MK615 increased the population of cells in G2/M phase. CONCLUSION: MK615 exerts an anti-neoplastic effect on human pancreatic cancer cells in vitro by dual inhibition of Aurora A and B kinases.