The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag...The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.展开更多
Most organic electrode materials(OEMs)for rechargeable batteries employ n-type redox centers,whose redox potentials are intrinsically limited<3.0 V versus Li^(+)/Li.However,p-type materials possessing high redox po...Most organic electrode materials(OEMs)for rechargeable batteries employ n-type redox centers,whose redox potentials are intrinsically limited<3.0 V versus Li^(+)/Li.However,p-type materials possessing high redox potentials experience low specific capacities because they are capable of only a single redox reaction within the stable electrochemical window of typical electrolytes.Herein,we report 5,11-diethyl-5,11-dihydroindolo[3,2-b]carbazole(DEICZ)as a novel p-type OEM,exhibiting stable plateaus at high discharge potentials of 3.44 and 4.09 V versus Li^(+)/Li.Notably,the second redox potential of DEICZ is within the stable electrochemical window.The mechanism of the double redox reaction is investigated using both theoretical calculations and experimental measurements,including density functional theory calculations,ex situ electron spin resonance,and X-ray photoelectron spectroscopy.Finally,hybridization with single-walled carbon nanotubes(SWCNT)improves the cycle stability and rate performance of DEICZ owing to theπ-πinteractions between the SWCNT and co-planar molecular structure of DEICZ,preventing the dissolution of active materials into the electrolyte.The DEICZ/SWCNT composite electrode maintains 70.4%of its initial specific capacity at 1-C rate and also exhibits high-rate capability,even performing well at 100-C rate.Furthermore,we demonstrate its potential for flexible batteries after applying 1000 bending stresses to the composite electrode.展开更多
Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentall...Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges.It has been demonstrated that the fabrication ofⅢ–Ⅴsemiconductor-based photocatalysts is effective in increasing solar light absorption,long-term stability,large-scale production and promoting charge transfer.This focused review explores on the current developments inⅢ–Ⅴsemiconductor materials for solar-powered photocatalytic systems.The review explores on various subjects,including the advancement ofⅢ–Ⅴsemiconductors,photocatalytic mechanisms,and their uses in H2 conversion,CO_(2)reduction,environmental remediation,and photocatalytic oxidation and reduction reactions.In order to design heterostructures,the review delves into basic concepts including solar light absorption and effective charge separation.It also highlights significant advancements in green energy systems for water splitting,emphasizing the significance of establishing eco-friendly systems for CO_(2)reduction and hydrogen production.The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion.The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.展开更多
To unlock the full potential of PSCs,machine learning(ML)was implemented in this research to predict the optimal combination of mesoporous-titanium dioxide(mp-TiO_(2))and weight percentage(wt%)of phenyl-C_(61)-butyric...To unlock the full potential of PSCs,machine learning(ML)was implemented in this research to predict the optimal combination of mesoporous-titanium dioxide(mp-TiO_(2))and weight percentage(wt%)of phenyl-C_(61)-butyric acid methyl ester(PCBM),along with the current density(J_(sc)),open-circuit voltage(V_(oc)),fill factor(ff),and energy conversion efficiency(ECE).Then,the combination that yielded the highest predicted ECE was selected as a reference to fabricate PCBM-PSCs with nanopatterned TiO_(2)layer.Subsequently,the PCBM-PSCs with nanopatterned TiO_(2)layers were fabricated and characterized to further understand the effects of nanopatterning depth and wt%of PCBM on PSCs.Experimentally,the highest ECE of 17.338%is achieved at 127 nm nanopatterning depth and 0.10 wt%of PCBM,where the J_(sc),V_(oc),and ff are 22.877 mA cm^(-2),0.963 V,and 0.787,respectively.The measured J_(sc),V_(oc),ff,and ECE values show consistencies with the ML prediction.Hence,these findings not only revealed the potential of ML to be used as a preliminary investigation to navigate the research of PSCs but also highlighted that nanopatterning depth has a significant impact on J_(sc),and the incorporation of PCBM on perovskite layer influenced the V_(oc)and ff,which further boosted the performance of PSCs.展开更多
A universal vaccine is in high demand to address the uncertainties of antigenic drift and the reduced effectiveness of current influenza vaccines.In this study,a strategy called computationally optimized broadly react...A universal vaccine is in high demand to address the uncertainties of antigenic drift and the reduced effectiveness of current influenza vaccines.In this study,a strategy called computationally optimized broadly reactive antigen(COBRA)was used to generate a consensus sequence of the hemagglutinin globular head portion(HA1)of influenza virus samples collected from 1918 to 2021 to trace evolutionary changes and incorporate them into the designed constructs.Constructs carrying different HA1regions were delivered into eukaryotic cells by Salmonella-mediated bactofection using a Semliki Forest virus RNA-dependent RNApolymerase(RdRp)-based eukaryotic expression system,pJHL204.Recombinant protein expression was confirmed by Western blot and immunofluorescence assays.Mice immunized with the designed constructs produced a humoral response,with a significant increase in immunoglobulin G(IgG)levels,and a cell-mediated immune response,including a 1.5-fold increase in CD4^(+) and CD8^(+)T cells.Specifically,constructs #1 and #5 increased the production of interferon-γ(IFN-γ)producing CD4^(+)and CD8^(+)T cells,skewing the response toward the T helper type 1 cell(Th1)pathway.Additionally,interleukin-4(IL-4)-producing T cells were upregulated 4-fold.Protective efficacy was demonstrated,with up to 4-fold higher production of neutralizing antibodies and a hemagglutination inhibition titer>40 against the selected viral strains.The designed constructs conferred a broadly protective immune response,resulting in a notable reduction in viral titer and minimal inflammation in the lungs of mice challenged with the influenza A/PR8/34,A/Brisbane/59/2007,A/California/07/2009,KBPV VR-92,and NCCP 43021 strains.This discovery revolutionizes influenza vaccine design and delivery;Salmonella-mediated COBRA-HA1 is a highly effective in vivo antigen presentation strategy.This approach can effectively combat seasonal H1N1 influenza strains and potential pandemic outbreaks.展开更多
The current letter to the editor pertains to the manuscript entitled'Uridine diphosphate glucuronosyltransferase 1A1 prevents the progression of liver injury'.Increased levels of uridine diphosphate glucuronos...The current letter to the editor pertains to the manuscript entitled'Uridine diphosphate glucuronosyltransferase 1A1 prevents the progression of liver injury'.Increased levels of uridine diphosphate glucuronosyltransferase 1A1 during liver injury could mitigate damage by reducing endoplasmic reticulum stress,oxidative stress,and dysregulated lipid metabolism,impeding hepatocyte apoptosis and necroptosis.展开更多
Hematite(α-Fe_(2)O_(3)) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical(PEC) water splitting photoanode.Herein,we propose...Hematite(α-Fe_(2)O_(3)) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical(PEC) water splitting photoanode.Herein,we propose a Zr-doped Fe_(2)O_(3) photoanode decorated with facilely spin-coated Au nanoparticles(NPs) and microwave-assisted attached Si co-doping in conjunction with a SiO_(x) overlayer that displayed a remarkable photocurrent density of 2.01 mA/cm^(2) at 1.23 V vs.RHE.The kinetic dynamics at the photoelectrode/-electrolyte interface was examined by employing systematic electrochemical investigations.The Au NPs played a dual role in increasing PEC water splitting.First,the Schottky interface that was formed between Au NPs and Zr-Fe_(2)O_(3) lectrode ensured the prevention of electron flow from the photoanode to the metal,increasing the number of available charges as well as suppressing surface charge recombination.Second,Au extracted photoholes from the bulk of the Zr-Fe_(2)O_(3) and transported them to the outer SiO_(x) overlayer,while the SiO_(x) overlayer efficiently collected the photoholes and promoted the hole injection into the electrolyte.Further,Si co-doping enhanced bulk conductivity by reducing bulk charge transfer resistance and improving charge carrier density.This study outlines a technique to design a metallic charge transfer path with an overlayer for solar energy conversion.展开更多
BACKGROUND Immunoglobulin G4-related disease(IgG4-RD)is a complex immune-mediated condition that causes fibrotic inflammation in several organs.A significant clinical feature of IgG4-RD is hypertrophic pachymeningitis...BACKGROUND Immunoglobulin G4-related disease(IgG4-RD)is a complex immune-mediated condition that causes fibrotic inflammation in several organs.A significant clinical feature of IgG4-RD is hypertrophic pachymeningitis,which manifests as inflammation of the dura mater in intracranial or spinal regions.Although IgG4-RD can affect multiple areas,the spine is a relatively rare site compared to the more frequent involvement of intracranial structures.CASE SUMMARY A 70-year-old male presented to our hospital with a two-day history of fever,altered mental status,and generalized weakness.The initial brain magnetic resonance imaging(MRI)revealed multiple small infarcts across various cerebral regions.On the second day after admission,a physical examination revealed motor weakness in both lower extremities and diminished sensation in the right lower extremity.Electromyographic evaluation revealed findings consistent with acute motor sensory neuropathy.Despite initial management with intravenous immunoglobulin for presumed Guillain-Barrésyndrome,the patient exhibited progressive worsening of motor deficits.On the 45th day of hospitalization,an enhanced MRI of the entire spine,focusing specifically on the thoracic 9 to lumbar 1 vertebral level,raised the suspicion of IgG4-related spinal pachymeningitis.Subsequently,the patient was administered oral prednisolone and participated in a comprehensive rehabilitation program that included gait training and lower extremity strengthening exercises.CONCLUSION IgG4-related spinal pachymeningitis,diagnosed on MRI,was treated with corticosteroids and a structured rehabilitation regimen,leading to significant improvement.展开更多
Diverse bacterial and fungal pathogens attack plants,causing biotic stress and severe yield losses globally.These losses are expected to become more serious as climate change improves conditions for many pathogens.The...Diverse bacterial and fungal pathogens attack plants,causing biotic stress and severe yield losses globally.These losses are expected to become more serious as climate change improves conditions for many pathogens.Therefore,identifying genes conferring broad-spectrum disease resistance and elucidating their underlying mechanisms provides important resources for plant breeding.WRKY transcription factors affect plant growth and stress responses.However,the functions of many WRKY proteins remain to be elucidated.Here,we demonstrated the role of rice(Oryza sativa)WRKY groupⅢtranscription factor OsWRKY65 in immunity.OsWRKY65 localized to the nucleus and acted as transcriptional repressor.Genetic and molecular functional analyses showed that OsWRKY65 increases resistance to the fungal pathogen Fusarium fujikuroi through downregulation of GA signaling and upregulation of JA signaling.Moreover,OsWRKY65 modulated the expression of the key genes that confer susceptibility or resistance to Xanthomonas oryzae pv.oryzae to enhance immunity against the pathogen.In particular,OsWRKY65directly bound to the promoter region of OsSWEET13 and repressed its expression.Taken together,our findings demonstrate that the OsWRKY65 enhances resistance to fungal and bacterial pathogens in rice.展开更多
BACKGROUND Hemophagocytic lymphohistiocytosis(HLH)is a rare,life-threatening disorder caused by abnormal histiocytes and T cell activation.In adults,it is predominantly associated with infections,cancers,and autoimmun...BACKGROUND Hemophagocytic lymphohistiocytosis(HLH)is a rare,life-threatening disorder caused by abnormal histiocytes and T cell activation.In adults,it is predominantly associated with infections,cancers,and autoimmune diseases.Relapsing polychondritis(RP),another rare disease,is diagnosed based on symptoms without specific tests,featuring cartilage inflammation characterized by swelling,redness,and pain,rarely inducing HLH.CASE SUMMARY A 74-year-old woman visited the emergency room with a fever of 38.6℃.Blood tests,cultures,and imaging were performed to evaluate fever.Results showed increased fluorescent antinuclear antibody levels and mild cytopenia,with no other specific findings.Imaging revealed lymph node enlargement was observed;however,biopsy results were inconclusive.Upon re-evaluation of the physical exam,inflammatory signs suggestive of RP were observed in the ears and nose,prompting a tissue biopsy for confirmation.Simultaneously,persistent fever accompanied by cytopenia prompted a bone marrow examination,revealing hemophagocytic cells.After finding no significant results in blood culture,viral markers,and tissue examination of enlarged lymph nodes,HLH was diagnosed by RP.Treatment involved methylprednisolone followed by azathioprine.After two months,bone marrow examination confirmed resolution of hemophagocytosis,with normalization of hyperferritinemia and pancytopenia.CONCLUSION Thorough physical examination enabled diagnosis and treatment of HLH trig gered by RP in patients presenting with fever of unknown origin.展开更多
Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th...Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.展开更多
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect...The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.展开更多
This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters...This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.展开更多
In this paper,since the Avalanche Photo Diode(APD)for Light-to-Voltage LTV conversion uses a high voltage in the operating range unlike other Photo Diodes(PD),the quenching resistor must be connected in series to prev...In this paper,since the Avalanche Photo Diode(APD)for Light-to-Voltage LTV conversion uses a high voltage in the operating range unlike other Photo Diodes(PD),the quenching resistor must be connected in series to prevent overcurrent when using the Transimpedance Amplifier(TIA).In such a case,quenching resistance may affect the transfer function of the TIA circuit,resulting in serious stability.Therefore,in this paper,by analyzing the effect of APD quenching resistance on the voltage and current loop transfer function of TIA,we proposed a loop analysis and a method for determining the quenching resistance value to improve stability.A TIA circuit with quenching resistance was designed by the proposed method and its operational stability was verified through simulation and chip fabrication.展开更多
BACKGROUND Capecitabine is used in combination with lapatinib as palliative treatment for human epidermal growth factor receptor 2-positive metastatic breast cancer.The most frequently reported adverse events attribut...BACKGROUND Capecitabine is used in combination with lapatinib as palliative treatment for human epidermal growth factor receptor 2-positive metastatic breast cancer.The most frequently reported adverse events attributed to capecitabine include diarrhea,hyperbilirubinemia,and hand-foot syndrome(HFS).A number of cutaneous adverse events have been attributed to capecitabine,including Stevens-Johnson syndrome(SJS)as a rare and potentially life-threatening mucocutaneous condition.We report the first case involving concurrent SJS and HFS after capecitabine and lapatinib treatment.CASE SUMMARY A 70-year-old woman with a history of breast cancer treatment visited our hospital for evaluation of painful skin lesions.Six weeks earlier,she had been prescribed capecitabine plus lapatinib as treatment for metastatic breast cancer.She subsequently developed worsening erythema and bullae on her palms and soles,as well as reddish macules on her back and chest wall.Histopathological evaluation of the chest wall lesions revealed extensive eosinophilic epidermal necrosis and separation of the epidermis from the dermis.The capecitabine plus lapatinib treatment was discontinued immediately and treatment was started using systemic steroids.This treatment resolved most lesions,although the lesions on her palms and soles required Vaseline gauze dressings,which resulted in reepithelialization.Therefore,we determined that the patient had concurrent SJS and HFS.Although the dermatological problems resolved,the patient ultimately died because of multiple organ failure.CONCLUSION Oral capecitabine treatment carries a risk of both HFS and also life-threatening adverse cutaneous drug reactions,such as SJS.展开更多
The Internet of Things(IoT)integrates billions of self-organized and heterogeneous smart nodes that communicate with each other without human intervention.In recent years,IoT based systems have been used in improving ...The Internet of Things(IoT)integrates billions of self-organized and heterogeneous smart nodes that communicate with each other without human intervention.In recent years,IoT based systems have been used in improving the experience in many applications including healthcare,agriculture,supply chain,education,transportation and traffic monitoring,utility services etc.However,node heterogeneity raised security concern which is one of the most complicated issues on the IoT.Implementing security measures,including encryption,access control,and authentication for the IoT devices are ineffective in achieving security.In this paper,we identified various types of IoT threats and shallow(such as decision tree(DT),random forest(RF),support vector machine(SVM))as well as deep machine learning(deep neural network(DNN),deep belief network(DBN),long short-term memory(LSTM),stacked LSTM,bidirectional LSTM(Bi-LSTM))based intrusion detection systems(IDS)in the IoT environment have been discussed.The performance of these models has been evaluated using five benchmark datasets such as NSL-KDD,IoTDevNet,DS2OS,IoTID20,and IoT Botnet dataset.The various performance metrics such as Accuracy,Precision,Recall,F1-score were used to evaluate the performance of shallow/deep machine learning based IDS.It has been found that deep machine learning IDS outperforms shallow machine learning in detecting IoT attacks.展开更多
This paper presents a state-of-the-art review in modeling approach of hardware in the loop simulation(HILS)realization of electric machine drives using commercial real time machines.HILS implementation using digital s...This paper presents a state-of-the-art review in modeling approach of hardware in the loop simulation(HILS)realization of electric machine drives using commercial real time machines.HILS implementation using digital signal processors(DSPs)and field programmable gate array(FPGA)for electric machine drives has been investigated but those methods have drawbacks such as complexity in development and verification.Among various HILS implementation approaches,more efficient development and verification for electric machine drives can be achieved through use of commercial real time machines.As well as implementation of the HILS,accurate modeling of a control target system plays an important role.Therefore,modeling trend in electric machine drives for HILS implementation is needed to be reviewed.This paper provides a background of HILS and commercially available real time machines and characteristics of each real time machine are introduced.Also,recent trends and progress of permanent magnet synchronous machines(PMSMs)modeling are presented for providing more accurate HILS implementation approaches in this paper.展开更多
Two-dimensional metal dichalcogenides have been evidenced as potential electrocatalysts for hydrogen evolution reaction(HER);however,their application is limited by a poor oxygen evolution reaction(OER)activity due to...Two-dimensional metal dichalcogenides have been evidenced as potential electrocatalysts for hydrogen evolution reaction(HER);however,their application is limited by a poor oxygen evolution reaction(OER)activity due to insufficient number/types of multi-integrated active sites.In this study,we report a novel bifunctional catalyst developed by simultaneous engineering of single nickel atoms(Ni_(SA)) and nickel phosphate clusters(Ni_(Pi)) to synergistically trigger surface-functionalized MoS_(2) nanosheets(NSs)resulting in high reactivities for both HER and OER.The Ni_(SA)-Ni_(Pi)/MoS_(2)NSs material exhibits a fairly Pt-like HER behavior with an overpotential of 94.0 mV and a small OER overpotential of 314.0 mV to reach 10 mA cm^(-2) in freshwater containing 1.0 M KOH.Experimental results of the catalyst are well supported by theoretical study,which reveals the significant modulation of electronic structure and enrichment of electroactive site number/types with their reasonably adjusted free adsorption energy.For evaluating practicability,the Ni_(SA)-Ni_(Pi)/MoS_(2)NSs-based electrolyzer delivers effective operation voltage of 1.62,1.52,and 1.66 V at 10 mA cm^(-2) and superior long-term stability as compared to Pt/C//RuO_(2) system in freshwater,mimic seawater,and natural seawater,respectively.The present study indicates that the catalyst is a promising candidate for the practical production of green hydrogen via water electrolysis.展开更多
The inadvertent dissolution of gangue minerals is frequently detrimental to the flotation of valuable minerals.We investigated the effect of conditioning time on the separation of brucite and serpentine by flotation.B...The inadvertent dissolution of gangue minerals is frequently detrimental to the flotation of valuable minerals.We investigated the effect of conditioning time on the separation of brucite and serpentine by flotation.By analyzing the Mg2+concentration,relative element content,and pulp viscosity,we studied the effect of mineral dissolution on brucite flotation.The results of artificially mixed mineral flotation tests(with-10μm serpentine)showed that by extending the conditioning time from 60 to 360 s,a large amount of Mg2+on the mineral surface gradually dissolved into the pulp,resulting in a decreased brucite recovery(from 83.83%to 76.79%)and an increased recovery of serpentine from 52.12%to 64.03%.To analyze the agglomeration behavior of brucite and serpentine,we used scanning electron microscopy,which clearly showed the different adhesion behaviors of different conditioning times.Lastly,the total interaction energy,as determined based on the extended DLVO(Derjaguin-Landau-Verwey-Overbeek)theory,also supports the conclusion that the gravitational force between brucite and serpentine increases significantly with increased conditioning time.展开更多
BACKGROUND When interpreting nuclear medicine images,unexpected findings are sometimes encountered.Recognizing these findings and determining the mechanism of their occurrence could have a significant impact on early ...BACKGROUND When interpreting nuclear medicine images,unexpected findings are sometimes encountered.Recognizing these findings and determining the mechanism of their occurrence could have a significant impact on early diagnosis of critical diseases and the appropriate management of patients.CASE SUMMARY A 59-year-old man was admitted to the emergency room due to left hemiparesis,left hemifacial palsy,and mild dysarthria.After 2 wk of hospitalization,the patient complained of dry eyes and mouth.Thus,salivary scintigraphy was performed to evaluate the functional status of his salivary glands.Incidental accumulation in the right frontoparietal area was found on salivary scintigraphy.Fluid-attenuated inversion recovery phase magnetic resonance(FLAIR phase MR)image showed diffuse high signal intensity in the same area.Anterior and posterior horns of the right lateral ventricle were obliterated and the midline was slightly shifted to the left side due to right frontoparietal swelling.On salivary scintigraphy,Tc-99m pertechnetate was incidentally accumulated in a subacute cerebral infarction lesion.Two years after the diagnosis of acute infarction,the second series of salivary scintigraphy showed no abnormal activity in the brain.FLAIR phase MR image also demonstrated markedly decreased high signal intensity in the previous infarction lesion without evidence of swelling indicating chronic cerebral infarction.CONCLUSION This case highlights that Tc-99m pertechnetate could accumulate in a subacute cerebral infarction lesion.The mechanism of an unexpected uptake of Tc-99m pertechnetate in unusual sites should be evaluated and kept in mind for better interpretation.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2021R1A4A2000934).
文摘The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.
基金supported by the National Research Foundation(NRF)of Korea grant funded by the Korean government(MSIT)(2023R1A2C2002605)Korea Institute of Science and Technology(KIST,Korea)Institutional Program(2Z06903 and 2E32634)supported by the Basic Science Research Program through the NRF funded by the Ministry of Science(NRF-2021R1A2C4002030)
文摘Most organic electrode materials(OEMs)for rechargeable batteries employ n-type redox centers,whose redox potentials are intrinsically limited<3.0 V versus Li^(+)/Li.However,p-type materials possessing high redox potentials experience low specific capacities because they are capable of only a single redox reaction within the stable electrochemical window of typical electrolytes.Herein,we report 5,11-diethyl-5,11-dihydroindolo[3,2-b]carbazole(DEICZ)as a novel p-type OEM,exhibiting stable plateaus at high discharge potentials of 3.44 and 4.09 V versus Li^(+)/Li.Notably,the second redox potential of DEICZ is within the stable electrochemical window.The mechanism of the double redox reaction is investigated using both theoretical calculations and experimental measurements,including density functional theory calculations,ex situ electron spin resonance,and X-ray photoelectron spectroscopy.Finally,hybridization with single-walled carbon nanotubes(SWCNT)improves the cycle stability and rate performance of DEICZ owing to theπ-πinteractions between the SWCNT and co-planar molecular structure of DEICZ,preventing the dissolution of active materials into the electrolyte.The DEICZ/SWCNT composite electrode maintains 70.4%of its initial specific capacity at 1-C rate and also exhibits high-rate capability,even performing well at 100-C rate.Furthermore,we demonstrate its potential for flexible batteries after applying 1000 bending stresses to the composite electrode.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(No.2022M3H4A1A04096380)and(No.2022M3H4A3A01082883)。
文摘Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges.It has been demonstrated that the fabrication ofⅢ–Ⅴsemiconductor-based photocatalysts is effective in increasing solar light absorption,long-term stability,large-scale production and promoting charge transfer.This focused review explores on the current developments inⅢ–Ⅴsemiconductor materials for solar-powered photocatalytic systems.The review explores on various subjects,including the advancement ofⅢ–Ⅴsemiconductors,photocatalytic mechanisms,and their uses in H2 conversion,CO_(2)reduction,environmental remediation,and photocatalytic oxidation and reduction reactions.In order to design heterostructures,the review delves into basic concepts including solar light absorption and effective charge separation.It also highlights significant advancements in green energy systems for water splitting,emphasizing the significance of establishing eco-friendly systems for CO_(2)reduction and hydrogen production.The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion.The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.
基金supported by the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),which received financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20204010600470)the Korea Evaluation Institute of Industrial Technology(KEIT)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20018608)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2022R1I1A1A01064236)
文摘To unlock the full potential of PSCs,machine learning(ML)was implemented in this research to predict the optimal combination of mesoporous-titanium dioxide(mp-TiO_(2))and weight percentage(wt%)of phenyl-C_(61)-butyric acid methyl ester(PCBM),along with the current density(J_(sc)),open-circuit voltage(V_(oc)),fill factor(ff),and energy conversion efficiency(ECE).Then,the combination that yielded the highest predicted ECE was selected as a reference to fabricate PCBM-PSCs with nanopatterned TiO_(2)layer.Subsequently,the PCBM-PSCs with nanopatterned TiO_(2)layers were fabricated and characterized to further understand the effects of nanopatterning depth and wt%of PCBM on PSCs.Experimentally,the highest ECE of 17.338%is achieved at 127 nm nanopatterning depth and 0.10 wt%of PCBM,where the J_(sc),V_(oc),and ff are 22.877 mA cm^(-2),0.963 V,and 0.787,respectively.The measured J_(sc),V_(oc),ff,and ECE values show consistencies with the ML prediction.Hence,these findings not only revealed the potential of ML to be used as a preliminary investigation to navigate the research of PSCs but also highlighted that nanopatterning depth has a significant impact on J_(sc),and the incorporation of PCBM on perovskite layer influenced the V_(oc)and ff,which further boosted the performance of PSCs.
基金Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2019R1A6A1A03033084).
文摘A universal vaccine is in high demand to address the uncertainties of antigenic drift and the reduced effectiveness of current influenza vaccines.In this study,a strategy called computationally optimized broadly reactive antigen(COBRA)was used to generate a consensus sequence of the hemagglutinin globular head portion(HA1)of influenza virus samples collected from 1918 to 2021 to trace evolutionary changes and incorporate them into the designed constructs.Constructs carrying different HA1regions were delivered into eukaryotic cells by Salmonella-mediated bactofection using a Semliki Forest virus RNA-dependent RNApolymerase(RdRp)-based eukaryotic expression system,pJHL204.Recombinant protein expression was confirmed by Western blot and immunofluorescence assays.Mice immunized with the designed constructs produced a humoral response,with a significant increase in immunoglobulin G(IgG)levels,and a cell-mediated immune response,including a 1.5-fold increase in CD4^(+) and CD8^(+)T cells.Specifically,constructs #1 and #5 increased the production of interferon-γ(IFN-γ)producing CD4^(+)and CD8^(+)T cells,skewing the response toward the T helper type 1 cell(Th1)pathway.Additionally,interleukin-4(IL-4)-producing T cells were upregulated 4-fold.Protective efficacy was demonstrated,with up to 4-fold higher production of neutralizing antibodies and a hemagglutination inhibition titer>40 against the selected viral strains.The designed constructs conferred a broadly protective immune response,resulting in a notable reduction in viral titer and minimal inflammation in the lungs of mice challenged with the influenza A/PR8/34,A/Brisbane/59/2007,A/California/07/2009,KBPV VR-92,and NCCP 43021 strains.This discovery revolutionizes influenza vaccine design and delivery;Salmonella-mediated COBRA-HA1 is a highly effective in vivo antigen presentation strategy.This approach can effectively combat seasonal H1N1 influenza strains and potential pandemic outbreaks.
文摘The current letter to the editor pertains to the manuscript entitled'Uridine diphosphate glucuronosyltransferase 1A1 prevents the progression of liver injury'.Increased levels of uridine diphosphate glucuronosyltransferase 1A1 during liver injury could mitigate damage by reducing endoplasmic reticulum stress,oxidative stress,and dysregulated lipid metabolism,impeding hepatocyte apoptosis and necroptosis.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C1095669,NRF-2021R1F1A1049366 and NRF2023R1A2C1003088)supported by the GRDC(Global Research Development Center)Cooperative Hub Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(RS-202300258911)。
文摘Hematite(α-Fe_(2)O_(3)) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical(PEC) water splitting photoanode.Herein,we propose a Zr-doped Fe_(2)O_(3) photoanode decorated with facilely spin-coated Au nanoparticles(NPs) and microwave-assisted attached Si co-doping in conjunction with a SiO_(x) overlayer that displayed a remarkable photocurrent density of 2.01 mA/cm^(2) at 1.23 V vs.RHE.The kinetic dynamics at the photoelectrode/-electrolyte interface was examined by employing systematic electrochemical investigations.The Au NPs played a dual role in increasing PEC water splitting.First,the Schottky interface that was formed between Au NPs and Zr-Fe_(2)O_(3) lectrode ensured the prevention of electron flow from the photoanode to the metal,increasing the number of available charges as well as suppressing surface charge recombination.Second,Au extracted photoholes from the bulk of the Zr-Fe_(2)O_(3) and transported them to the outer SiO_(x) overlayer,while the SiO_(x) overlayer efficiently collected the photoholes and promoted the hole injection into the electrolyte.Further,Si co-doping enhanced bulk conductivity by reducing bulk charge transfer resistance and improving charge carrier density.This study outlines a technique to design a metallic charge transfer path with an overlayer for solar energy conversion.
文摘BACKGROUND Immunoglobulin G4-related disease(IgG4-RD)is a complex immune-mediated condition that causes fibrotic inflammation in several organs.A significant clinical feature of IgG4-RD is hypertrophic pachymeningitis,which manifests as inflammation of the dura mater in intracranial or spinal regions.Although IgG4-RD can affect multiple areas,the spine is a relatively rare site compared to the more frequent involvement of intracranial structures.CASE SUMMARY A 70-year-old male presented to our hospital with a two-day history of fever,altered mental status,and generalized weakness.The initial brain magnetic resonance imaging(MRI)revealed multiple small infarcts across various cerebral regions.On the second day after admission,a physical examination revealed motor weakness in both lower extremities and diminished sensation in the right lower extremity.Electromyographic evaluation revealed findings consistent with acute motor sensory neuropathy.Despite initial management with intravenous immunoglobulin for presumed Guillain-Barrésyndrome,the patient exhibited progressive worsening of motor deficits.On the 45th day of hospitalization,an enhanced MRI of the entire spine,focusing specifically on the thoracic 9 to lumbar 1 vertebral level,raised the suspicion of IgG4-related spinal pachymeningitis.Subsequently,the patient was administered oral prednisolone and participated in a comprehensive rehabilitation program that included gait training and lower extremity strengthening exercises.CONCLUSION IgG4-related spinal pachymeningitis,diagnosed on MRI,was treated with corticosteroids and a structured rehabilitation regimen,leading to significant improvement.
基金funded by Research Program for Agricultural Science and Technology Development(PJ01570601)and the Fellowship Program(PJ01661001 and PJ01570601)of the National Institute of Agricultural Sciences,Rural Development Administration,Republic of Korea。
文摘Diverse bacterial and fungal pathogens attack plants,causing biotic stress and severe yield losses globally.These losses are expected to become more serious as climate change improves conditions for many pathogens.Therefore,identifying genes conferring broad-spectrum disease resistance and elucidating their underlying mechanisms provides important resources for plant breeding.WRKY transcription factors affect plant growth and stress responses.However,the functions of many WRKY proteins remain to be elucidated.Here,we demonstrated the role of rice(Oryza sativa)WRKY groupⅢtranscription factor OsWRKY65 in immunity.OsWRKY65 localized to the nucleus and acted as transcriptional repressor.Genetic and molecular functional analyses showed that OsWRKY65 increases resistance to the fungal pathogen Fusarium fujikuroi through downregulation of GA signaling and upregulation of JA signaling.Moreover,OsWRKY65 modulated the expression of the key genes that confer susceptibility or resistance to Xanthomonas oryzae pv.oryzae to enhance immunity against the pathogen.In particular,OsWRKY65directly bound to the promoter region of OsSWEET13 and repressed its expression.Taken together,our findings demonstrate that the OsWRKY65 enhances resistance to fungal and bacterial pathogens in rice.
文摘BACKGROUND Hemophagocytic lymphohistiocytosis(HLH)is a rare,life-threatening disorder caused by abnormal histiocytes and T cell activation.In adults,it is predominantly associated with infections,cancers,and autoimmune diseases.Relapsing polychondritis(RP),another rare disease,is diagnosed based on symptoms without specific tests,featuring cartilage inflammation characterized by swelling,redness,and pain,rarely inducing HLH.CASE SUMMARY A 74-year-old woman visited the emergency room with a fever of 38.6℃.Blood tests,cultures,and imaging were performed to evaluate fever.Results showed increased fluorescent antinuclear antibody levels and mild cytopenia,with no other specific findings.Imaging revealed lymph node enlargement was observed;however,biopsy results were inconclusive.Upon re-evaluation of the physical exam,inflammatory signs suggestive of RP were observed in the ears and nose,prompting a tissue biopsy for confirmation.Simultaneously,persistent fever accompanied by cytopenia prompted a bone marrow examination,revealing hemophagocytic cells.After finding no significant results in blood culture,viral markers,and tissue examination of enlarged lymph nodes,HLH was diagnosed by RP.Treatment involved methylprednisolone followed by azathioprine.After two months,bone marrow examination confirmed resolution of hemophagocytosis,with normalization of hyperferritinemia and pancytopenia.CONCLUSION Thorough physical examination enabled diagnosis and treatment of HLH trig gered by RP in patients presenting with fever of unknown origin.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00213920,NRF-2021R1A4A1031761).
文摘Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.
基金supported by National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00335216,RS-2024-00407084 and RS-2023-00207836)Korea Environment Industry&Technology Institute(KEITI)through the R&D Project of Recycling Development for Future Waste Resources Program,funded by the Korea Ministry of Environment(MOE)(2022003500003).
文摘The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
基金supported by the National Research Foundation of Korea(Grant number:NRF-2023R1A2C2005864)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2024-00406240)+3 种基金supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.2022R1A2C1003853)supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.RS-2023-00217661)Technology Innovation Program(RS-2022-00155961,Development of a high-efficiency drying system for carbon reduction and high-loading electrodes by a flash light source)funded by the Ministry of Trade&,Energy(MOTIE,Korea)supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.2022R1A2C4001497).
文摘This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.
文摘In this paper,since the Avalanche Photo Diode(APD)for Light-to-Voltage LTV conversion uses a high voltage in the operating range unlike other Photo Diodes(PD),the quenching resistor must be connected in series to prevent overcurrent when using the Transimpedance Amplifier(TIA).In such a case,quenching resistance may affect the transfer function of the TIA circuit,resulting in serious stability.Therefore,in this paper,by analyzing the effect of APD quenching resistance on the voltage and current loop transfer function of TIA,we proposed a loop analysis and a method for determining the quenching resistance value to improve stability.A TIA circuit with quenching resistance was designed by the proposed method and its operational stability was verified through simulation and chip fabrication.
文摘BACKGROUND Capecitabine is used in combination with lapatinib as palliative treatment for human epidermal growth factor receptor 2-positive metastatic breast cancer.The most frequently reported adverse events attributed to capecitabine include diarrhea,hyperbilirubinemia,and hand-foot syndrome(HFS).A number of cutaneous adverse events have been attributed to capecitabine,including Stevens-Johnson syndrome(SJS)as a rare and potentially life-threatening mucocutaneous condition.We report the first case involving concurrent SJS and HFS after capecitabine and lapatinib treatment.CASE SUMMARY A 70-year-old woman with a history of breast cancer treatment visited our hospital for evaluation of painful skin lesions.Six weeks earlier,she had been prescribed capecitabine plus lapatinib as treatment for metastatic breast cancer.She subsequently developed worsening erythema and bullae on her palms and soles,as well as reddish macules on her back and chest wall.Histopathological evaluation of the chest wall lesions revealed extensive eosinophilic epidermal necrosis and separation of the epidermis from the dermis.The capecitabine plus lapatinib treatment was discontinued immediately and treatment was started using systemic steroids.This treatment resolved most lesions,although the lesions on her palms and soles required Vaseline gauze dressings,which resulted in reepithelialization.Therefore,we determined that the patient had concurrent SJS and HFS.Although the dermatological problems resolved,the patient ultimately died because of multiple organ failure.CONCLUSION Oral capecitabine treatment carries a risk of both HFS and also life-threatening adverse cutaneous drug reactions,such as SJS.
文摘The Internet of Things(IoT)integrates billions of self-organized and heterogeneous smart nodes that communicate with each other without human intervention.In recent years,IoT based systems have been used in improving the experience in many applications including healthcare,agriculture,supply chain,education,transportation and traffic monitoring,utility services etc.However,node heterogeneity raised security concern which is one of the most complicated issues on the IoT.Implementing security measures,including encryption,access control,and authentication for the IoT devices are ineffective in achieving security.In this paper,we identified various types of IoT threats and shallow(such as decision tree(DT),random forest(RF),support vector machine(SVM))as well as deep machine learning(deep neural network(DNN),deep belief network(DBN),long short-term memory(LSTM),stacked LSTM,bidirectional LSTM(Bi-LSTM))based intrusion detection systems(IDS)in the IoT environment have been discussed.The performance of these models has been evaluated using five benchmark datasets such as NSL-KDD,IoTDevNet,DS2OS,IoTID20,and IoT Botnet dataset.The various performance metrics such as Accuracy,Precision,Recall,F1-score were used to evaluate the performance of shallow/deep machine learning based IDS.It has been found that deep machine learning IDS outperforms shallow machine learning in detecting IoT attacks.
基金supported in part by the National Research Foundation of Korea(NRF)grant funded by Korea government(No.2020R1C1C1013260)in part by INHA UNIVERSITY Research Grant.
文摘This paper presents a state-of-the-art review in modeling approach of hardware in the loop simulation(HILS)realization of electric machine drives using commercial real time machines.HILS implementation using digital signal processors(DSPs)and field programmable gate array(FPGA)for electric machine drives has been investigated but those methods have drawbacks such as complexity in development and verification.Among various HILS implementation approaches,more efficient development and verification for electric machine drives can be achieved through use of commercial real time machines.As well as implementation of the HILS,accurate modeling of a control target system plays an important role.Therefore,modeling trend in electric machine drives for HILS implementation is needed to be reviewed.This paper provides a background of HILS and commercially available real time machines and characteristics of each real time machine are introduced.Also,recent trends and progress of permanent magnet synchronous machines(PMSMs)modeling are presented for providing more accurate HILS implementation approaches in this paper.
基金supported by the Regional Leading Research Center Program(2019R1A5A8080326)Basic Science Research Program(2020R1F1A1075921)BRL Program(2020R1A4A1018259)through the National Research Foundation(NRF)funded by the Ministry of Science and ICT of Republic of Korea.
文摘Two-dimensional metal dichalcogenides have been evidenced as potential electrocatalysts for hydrogen evolution reaction(HER);however,their application is limited by a poor oxygen evolution reaction(OER)activity due to insufficient number/types of multi-integrated active sites.In this study,we report a novel bifunctional catalyst developed by simultaneous engineering of single nickel atoms(Ni_(SA)) and nickel phosphate clusters(Ni_(Pi)) to synergistically trigger surface-functionalized MoS_(2) nanosheets(NSs)resulting in high reactivities for both HER and OER.The Ni_(SA)-Ni_(Pi)/MoS_(2)NSs material exhibits a fairly Pt-like HER behavior with an overpotential of 94.0 mV and a small OER overpotential of 314.0 mV to reach 10 mA cm^(-2) in freshwater containing 1.0 M KOH.Experimental results of the catalyst are well supported by theoretical study,which reveals the significant modulation of electronic structure and enrichment of electroactive site number/types with their reasonably adjusted free adsorption energy.For evaluating practicability,the Ni_(SA)-Ni_(Pi)/MoS_(2)NSs-based electrolyzer delivers effective operation voltage of 1.62,1.52,and 1.66 V at 10 mA cm^(-2) and superior long-term stability as compared to Pt/C//RuO_(2) system in freshwater,mimic seawater,and natural seawater,respectively.The present study indicates that the catalyst is a promising candidate for the practical production of green hydrogen via water electrolysis.
基金financial support from the Project funded by the China Postdoctoral Science Foundation(No.2020M670709)the National Natural Science Foundation of China(No.51974064)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.N2101025)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2017-02)。
文摘The inadvertent dissolution of gangue minerals is frequently detrimental to the flotation of valuable minerals.We investigated the effect of conditioning time on the separation of brucite and serpentine by flotation.By analyzing the Mg2+concentration,relative element content,and pulp viscosity,we studied the effect of mineral dissolution on brucite flotation.The results of artificially mixed mineral flotation tests(with-10μm serpentine)showed that by extending the conditioning time from 60 to 360 s,a large amount of Mg2+on the mineral surface gradually dissolved into the pulp,resulting in a decreased brucite recovery(from 83.83%to 76.79%)and an increased recovery of serpentine from 52.12%to 64.03%.To analyze the agglomeration behavior of brucite and serpentine,we used scanning electron microscopy,which clearly showed the different adhesion behaviors of different conditioning times.Lastly,the total interaction energy,as determined based on the extended DLVO(Derjaguin-Landau-Verwey-Overbeek)theory,also supports the conclusion that the gravitational force between brucite and serpentine increases significantly with increased conditioning time.
文摘BACKGROUND When interpreting nuclear medicine images,unexpected findings are sometimes encountered.Recognizing these findings and determining the mechanism of their occurrence could have a significant impact on early diagnosis of critical diseases and the appropriate management of patients.CASE SUMMARY A 59-year-old man was admitted to the emergency room due to left hemiparesis,left hemifacial palsy,and mild dysarthria.After 2 wk of hospitalization,the patient complained of dry eyes and mouth.Thus,salivary scintigraphy was performed to evaluate the functional status of his salivary glands.Incidental accumulation in the right frontoparietal area was found on salivary scintigraphy.Fluid-attenuated inversion recovery phase magnetic resonance(FLAIR phase MR)image showed diffuse high signal intensity in the same area.Anterior and posterior horns of the right lateral ventricle were obliterated and the midline was slightly shifted to the left side due to right frontoparietal swelling.On salivary scintigraphy,Tc-99m pertechnetate was incidentally accumulated in a subacute cerebral infarction lesion.Two years after the diagnosis of acute infarction,the second series of salivary scintigraphy showed no abnormal activity in the brain.FLAIR phase MR image also demonstrated markedly decreased high signal intensity in the previous infarction lesion without evidence of swelling indicating chronic cerebral infarction.CONCLUSION This case highlights that Tc-99m pertechnetate could accumulate in a subacute cerebral infarction lesion.The mechanism of an unexpected uptake of Tc-99m pertechnetate in unusual sites should be evaluated and kept in mind for better interpretation.