In this study, AZ31 Mg alloy was processed by a new severe plasticity deformation methodology with multi-pass lowered temperature, and the deformation behavior and microstructure evolution were investigated by finite ...In this study, AZ31 Mg alloy was processed by a new severe plasticity deformation methodology with multi-pass lowered temperature, and the deformation behavior and microstructure evolution were investigated by finite element method and electron back-scattered diffraction technique and hardness. The results show that with the increase of deformation pass, the strain gradually springs, and its interval distribution tends to homogenize. Meanwhile, the effective strain increases dramatically with the shear force sudden upgrade in the deformation process. Moreover, the new deformation technique can refine grain size remarkably. With the passes on, {10-12} tensile twins behavior and the pyramidal < c + a > slip are triggered more frequently, leading to the completeness of dynamic recrystallization (DRX) gradually, which weaken and disperse the basal texture obviously. Besides, the standard deviation of hardness is getting smaller, and the maximum can reach 78.40 HV on average, which can be attributed to the even large strain distribution, complete DRX, and the high geometrically necessary dislocation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52174362 and 51975207)the Xiangtan Special Project for Building a National Innovative City(Grant No.CG-YB20221043)the Yancheng“Talent Plan of Yellow Sea Pearl"for Leading Talent Project。
文摘In this study, AZ31 Mg alloy was processed by a new severe plasticity deformation methodology with multi-pass lowered temperature, and the deformation behavior and microstructure evolution were investigated by finite element method and electron back-scattered diffraction technique and hardness. The results show that with the increase of deformation pass, the strain gradually springs, and its interval distribution tends to homogenize. Meanwhile, the effective strain increases dramatically with the shear force sudden upgrade in the deformation process. Moreover, the new deformation technique can refine grain size remarkably. With the passes on, {10-12} tensile twins behavior and the pyramidal < c + a > slip are triggered more frequently, leading to the completeness of dynamic recrystallization (DRX) gradually, which weaken and disperse the basal texture obviously. Besides, the standard deviation of hardness is getting smaller, and the maximum can reach 78.40 HV on average, which can be attributed to the even large strain distribution, complete DRX, and the high geometrically necessary dislocation.