期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Three-Dimensional Density Distribution and Seismic Activity along the Guxiang–Tongmai Segment of the Jiali Fault,Tibet
1
作者 FAN Pengxiao YU Changqing +3 位作者 WANG Ruixue ZENG Xiangzhi QU Chen ZHANG Yue 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期454-467,共14页
The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the... The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the examination of seismic activity within the eastern Himalayan Syntaxis.New study in the research region has yielded a 1:200000 gravity dataset covering an area 1500 km^(2).Using wavelet transform multiscale decomposition,scratch analysis techniques,and 3D gravity inversion methods,gravity anomalies,fault distributions,and density structures were determined across various scales.Through the integration of our new gravity data with other geophysical and geological information,our findings demonstrate substantial variations in the overall crustal density within the region,with the fault distribution closely linked to these density fluctuations.Disparities in stratigraphic density are important causes of variations in the capacity of geological formations to endure regional tectonic stress.Earthquakes are predominantly concentrated within the density transition zone and are primarily situated in regions of elevated density.The hanging wall stress within the Guxiang-Tongmai segment of the Jiali fault exhibits a notable concentration,marked by pronounced anisotropy,and is positioned within the density differential zone,which is prone to earthquakes. 展开更多
关键词 SEISMICITY deep-density structure wavelet transform multi-scale decomposition scratch analysis 3D gravity inversion Jiali fault TIBET
下载PDF
Present-day Upper-crustal Strain Rate Field in Southeastern Tibet and its Geodynamic Implications:Constraints from GPS Measurements with ABIC Method
2
作者 YANG Shaohua PAN Jiawei +1 位作者 LI Haibing SHI Yaolin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期265-275,共11页
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne... The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust. 展开更多
关键词 strain rate differential escape ABIC GPS southeastern Tibet
下载PDF
An integrated north–south paleo-Dadu-Anning River: New insights from bulk major and trace element analyses of the Xigeda Formation
3
作者 Yong Zheng Hai-bing Li +3 位作者 Jia-wei Pan Ping Wang Ya Lai Zheng Gong 《China Geology》 CAS CSCD 2024年第1期91-103,共13页
The Xianshuihe-Anninghe fault extends SE–S and constitutes the southeastern margin of the Tibetan Plateau.However,the Dadu River which is associated with the fault does not flow following the path,but makes a 90º... The Xianshuihe-Anninghe fault extends SE–S and constitutes the southeastern margin of the Tibetan Plateau.However,the Dadu River which is associated with the fault does not flow following the path,but makes a 90ºturn within a distance of 1 km at Shimian,heading east,and joins the Yangtze River,finally flowing into the East China Sea.Adjacent to the abrupt turn,a low and wide pass near the Daqiao reservoir at Mianning separates the N–S course of the Dadu River from the headwater of the Anning River which then flows south into the Yunnan Province along the Anninghe fault.Therefore,many previous studies assumed southward flow of the paleo-Dadu River from the Shimian to the Anning River.However,evidences for the capture of the integrated N–S paleo-Dadu-Anning River,its timing,and causes are still insufficient.This study explored the paleo-drainage pattern of the Dadu and Anning Rivers based on bulk mineral and geochemical analyses of the large quantities of fluvial/lacustrine sediments along the trunk of the Dadu and Anning Rivers.Similar with sands in the modern Dadu River,the Xigeda sediments also exhibit a granitoid affinity with the bulk major mineral compositions of quartz(>50%),anorthite(about 10%),orthoclase(about 5%),muscovite(about 5%),and clinochlore(about 4%).Correspondingly,bulk major elements show high SiO_(2),with all samples>60%,and some of them>70%,low TiO_(2)(≤0.75%),P_(2)O_(5)(≤0.55%),FeO*(≤5%),and relatively high CaO(1.02%–8.51%),Na_(2)O(1.60%–2.52%),and K_(2)O(2.17%–2.71%),with a uniform REE patterns.Therefore,synthesizing all these results indicate that these lacustrine sediments have similar material sources,which are mainly derived from its course in the Songpan-Ganzi flysch block,implying that the paleo-Dadu originally flowed southward into the Anning River and provided materials to the Xigeda ancient lake.The rearrangement of the paleo-Dadu River appears to be closely related to the locally focused uplift driven by strong activities of the XianshuiheXiaojiang fault system. 展开更多
关键词 Dadu River Anninghe fault River diversion Xigeda Formation Tectonic uplift PROVENANCE Songpan-Ganzi flysch Ancient lake Xianshuihe-Xiaojiang fault system Tibetan Plateau
下载PDF
A Comparison Study of Synkinematic Illite Isolation,Quantitative X-ray Powder Diffraction,and K-Ar Dating for Direct Fault Gouge Analyses
4
作者 ZHENG Yong LI Haibing +2 位作者 LI Junjie ZHANG Guohe SI Jialiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第2期636-650,共15页
K-Ar dating of synkinematic illite is increasingly recognized as a central method to constrain the timing of shallow crustal faulting.Methods of efficient sample preparation and quantitative identification of illite p... K-Ar dating of synkinematic illite is increasingly recognized as a central method to constrain the timing of shallow crustal faulting.Methods of efficient sample preparation and quantitative identification of illite polytypes are critical to acquiring K-Ar isotope data for authigenic clays.In this respect,we compared the commonly used clay size separation method through centrifugation with vacuum filtration technology,showing that the former is prone to extract fractions with finer particle sizes under similar conditions,thus improving the error in the authigenic end-member age.Additionally,we demonstrated that the side-packed mounting method for X-ray diffraction analysis can significantly enhance the randomness in powder samples,thus improving the quantification accuracy compared with the front-packed and back-packed methods.The validity of our quantification method was confirmed by comparing Profex■modeling patterns with a suite of synthetic mixtures of known compositions,yielding an average analytical error of 3%.Dating results of these artificial mixtures and the reference materials indicated that a large range in percentages of detrital illite and a sufficient amount of age data will produce reliable results for ages of both extrapolated end-members.However,if the range is limited,the extrapolated age close to those of datasets is still reliable. 展开更多
关键词 illite polytypes fault gouge clay size separation mounting method Profex■ extrapolated K-Ar age
下载PDF
Origin of soft-sediment deformation structures in Nihewan Basin
5
作者 De-Chen Su Ai-Ping Sun +2 位作者 Zhao-Li Li Song-Yong Chen Zhen-Jie Wu 《Journal of Palaeogeography》 SCIE CSCD 2022年第3期332-359,共28页
The Nihewan Basin is a rift basin at the junction of northern Shanxi Province and northwestern Hebei Province in north China.The basin is known for its rich paleontological fossils and ancient human remains.There are ... The Nihewan Basin is a rift basin at the junction of northern Shanxi Province and northwestern Hebei Province in north China.The basin is known for its rich paleontological fossils and ancient human remains.There are also abundant soft-sediment deformation structures(SSDS)in the thick lacustrine sediments.Previously,most SSDS have been interpreted as ice-edge features or ignored entirely.Recently,the authors have carried out several field surveys in the Nihewan Basin and found that many SSDS are sandwiched between normal lacustrine strata at multiple sections.In the excavation pit at the 10th Locality of Maliang Site(ML10),10 horizontal SSDS layers and two vertically developed geological features have been identified.Based on genesis analysis and related criteria,these features are divided into two categories:cryoturbation-triggered SSDS and earthquake-triggered SSDS.Among them,a special type of ancient ice-wedge pseudomorph(SSDS-8)of ML10 is recognized in the basin for the first time.The other 9 horizontal SSDS are mainly caused by earthquake-triggered liquefaction and slumping.They can be further divided into 14 seismic event layers.These findings indicate that the tectonic activity in the Nihewan Basin is very strong and frequent,and there were cold periods in the geological history of the basin.At the same time,the SSDS with distinct morphological characteristics and stable horizontal distribution in the basin can be used as an important indicator of stratigraphic correlation. 展开更多
关键词 Nihewan Basin Soft-sediment deformation structures(SSDS) PALEOEARTHQUAKE Freezing-and-thawing Ice-wedge Palaeolithic site
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部