期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Supplementation of alanine improves biomass accumulation and lipid production of Chlorella pyrenoidosa by increasing the respiratory and metabolic processes
1
作者 Yongfu LI Tianze ZHAO +2 位作者 Wei SUN Ruiwen GAO Guangyuan MA 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期570-579,共10页
The function of exogenous alanine(Ala)in regulating biomass accumulation,lipid production,photosynthesis,and respiration in Chlorella pyrenoidosa was studied.Result shows that the supplementation of Ala increased C.py... The function of exogenous alanine(Ala)in regulating biomass accumulation,lipid production,photosynthesis,and respiration in Chlorella pyrenoidosa was studied.Result shows that the supplementation of Ala increased C.pyrenoidosa biomass and lipid production in an 8-d batch culture.The concentration of 10 mmol/L of Ala was optimum and increased the microalgal cell biomass and lipid content by 39.3%and 21.4%,respectively,compared with that in the control(0-mmol/L Ala).Ala supplementation reduced photosynthetic activity while boosting respiratory activity and pyruvate levels,indicating that C.pyrenoidosa used exogenous Ala for biomass accumulation through the respiratory metabolic process.The accelerated respiratory metabolism due to Ala supplementation elevated the substrate pool and improved the lipogenic gene expression,promoting lipid production at last.This study provided a novel method for increasing biomass accumulation and lipid production and elucidated the role of Ala in regulating lipid production. 展开更多
关键词 ALANINE Chlorella pyrenoidosa LIPID RESPIRATION lipogenic gene
下载PDF
Highly efficient and selective removal of phosphate from wastewater of sea cucumber aquaculture for microalgae culture using a new adsorption-membrane separation-coordinated strategy
2
作者 Aihua Zhang Shihao Fang +4 位作者 Huan Xi Jianke Huang Yongfu Li Guangyuan Ma Jianfeng Zhang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第10期27-39,共13页
Enhanced phosphorus treatment and recovery has been continuously pursued due to the stringent wastewater discharge regulations and a phosphate supply shortage. Here, a new adsorption-membrane separation strategy was d... Enhanced phosphorus treatment and recovery has been continuously pursued due to the stringent wastewater discharge regulations and a phosphate supply shortage. Here, a new adsorption-membrane separation strategy was developed for rational reutilization of phosphate from sea cucumber aquaculture wastewater using a Zr-modified-bentonite filled polyvinyl chloride membrane. The as-obtained polyvinyl chloride/Zr-modified-bentonite membrane was highly permeability (940 L/(m2·h)), 1–2 times higher than those reported in other studies, and its adsorption capacity was high (20.6 mg/g) when the phosphate concentration in water was low (5 mg/L). It remained stable under various conditions, such as different pH, initial phosphate concentrations, and the presence of different ions after 24 h of adsorption in a cross-flow filtration system. The total phosphorus and phosphate removal rate reached 91.5% and 95.9%, respectively, after the membrane was used to treat sea cucumber aquaculture wastewater for 24 h and no other water quality parameters had been changed. After the purification process, the utilization of the membrane as a new source of phosphorus in the phosphorus-free f/2 medium experiments indicated the high cultivability of economic microalgae Phaeodactylum tricornutum FACHB-863 and 1.2 times more chlorophyll a was present than in f/2 medium. The biomass and lipid content of the microalgae in the two different media were similar. The innovative polyvinyl chloride/Zr-modified-bentonite membrane used for phosphorus removal and recovery is an important instrument to establish the groundwork for both the treatment of low concentration phosphate from wastewater as well as the reuse of enriched phosphorus in required fields. 展开更多
关键词 Adsorption-membrane Low-concentration phosphate Zr-modified-bentonite RECYCLE Microalgal culture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部