Structure manipulation of photocatalysts at an atomic scale is a promising way to improve its photocatalytic performance.Herein,we realize the anchoring of single Ni atoms on the ZnIn_(2)S_(4) nanosheets with rich sul...Structure manipulation of photocatalysts at an atomic scale is a promising way to improve its photocatalytic performance.Herein,we realize the anchoring of single Ni atoms on the ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies.Experimental results demonstrate that single Ni atoms induce the formation of NiO-M(Zn/In) atomic interface,which can efficiently promote the carriers separation and prolong the carrier life time.In addition,in situ electron spin resonance spectroscopy(ESR) confirms that the single Ni atoms act as an electron trapping center for protons reduction.As a result,the single Ni atoms decorated ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies(Ni/ZnIn_(2)S_(4)-RVs) shows a hydrogen evolution rate up to 89.4 μmol h^(-1), almost 5.7 and 2.3 times higher compared to that of ZnIn_(2)S_(4) nanosheets with poor sulfur vacancies and rich sulfur vacancies(denoted as ZnIn_(2)S_(4)-PVs and ZnIn_(2)S_(4)-RVs).This work opens up a new perspective manipulating the single-atom cocatalyst and sulfur vacancy on sulfide supports for improving photocatalytic hydrogen evolution.展开更多
The transplantation of full-thickness skin grafts(FTSGs)is important for reconstructing skin barrier and promoting wound healing.Sufficient oxygen supply is closely related to the success of skin grafting.However,full...The transplantation of full-thickness skin grafts(FTSGs)is important for reconstructing skin barrier and promoting wound healing.Sufficient oxygen supply is closely related to the success of skin grafting.However,full-thickness oxygen delivery is limited by the poor oxygen permeability of skin.Oxygen-releasing sutures(O_(2)sutures)were developed to facilitate oxygen penetration through full-thickness skin.The O_(2)sutures delivered 100 times more oxygen than topical gaseous oxygen therapy at a 15 mm depth in the skin model.Under extreme hypoxia(<0.5%O_(2),v/v),O_(2)sutures could also promote endothelial cell proliferation.After the transplantation of FTSGs in mice,O_(2)sutures accelerated blood re-perfusion and increased the survival area of the skin graft.It is expected that O_(2)sutures will be adopted in clinical applications to increase the success rate of full-thickness skin transplantation.展开更多
Planar films of pure and Ti^(4+)-dopedβ-Fe_(2)O_(3)were prepared by a spray pyrolysis method.X-ray diffraction patterns and Raman spectra of the metastableβ-Fe_(2)O_(3)film showed that its thermal stability was sign...Planar films of pure and Ti^(4+)-dopedβ-Fe_(2)O_(3)were prepared by a spray pyrolysis method.X-ray diffraction patterns and Raman spectra of the metastableβ-Fe_(2)O_(3)film showed that its thermal stability was significantly improved because of covalent bonds in the interfaces between the film and substrate,while only weak Van der Waals bonds existed at the interfaces within the particle-assembledβ-Fe_(2)O_(3)film prepared by electrophoretic deposition.The as-prepared planar films were thus able to withstand higher annealing temperature and stronger laser irradiation power in comparison with theβ-Fe_(2)O_(3)particle-assembly.Ti^(4+)doping was used to increase the concentration of carriers in the metastableβ-Fe_(2)O_(3)film.Compared with pureβ-Fe_(2)O_(3)photoanodes,the highest saturated photocurrent for water splitting over the Ti^(4+)-dopedβ-Fe_(2)O_(3)photoanode was increased by a factor of approximately three.Theβ-Fe_(2)O_(3)photoanode exhibited photochemical stability for water splitting for a duration exceeding 100 h,which indicates its important potential application in solar energy conversion.展开更多
Developing highly active,cost-effective,and environmental friendly oxygen evolution reaction(OER)electrocatalysts facilitates various(photo)electrochemical processes.In this work,Fe3N nanoparticles encapsulated into N...Developing highly active,cost-effective,and environmental friendly oxygen evolution reaction(OER)electrocatalysts facilitates various(photo)electrochemical processes.In this work,Fe3N nanoparticles encapsulated into N-doped graphene nanoshells(Fe_(3)N@NG)as OER electrocatalysts in alkaline media were reported.Both the experimental and theoretical comparison between Fe_(3) N@NG and Fe_(3)N/NG,specifically including in situ Mossbauer analyses,demonstrated that the NG nanoshells improved interfacial electron transfer process from Fe_(3)N to NG to form high-valence Fe^(4+)ions(Fe^(4+)@NG),thus modifying electronic properties of the outer NG shells and subsequently electron transfer from oxygen intermediate to NG nanoshells for OER catalytic process.Meanwhile,the NG nanoshells also protected Fe-based cores from forming OER inactive and insulated Fe_(2)O_(3),leading to high OER stability.As a result,the as-formed Fe^(4+)@NG shows one of the highest electrocatalytic efficiency among reported Fe-based OER electrocatalysts,which can as well highly improve the photoelectrochemical water oxidation when used as the cocatalysts for the Fe_(2)O_(3) nanoarray photoanode.展开更多
Photoelectrochemical water splitting can convert solar energy into clean hydrogen energy for storage.It is desirable to explore non-precious electrocatalysts for practical applications of a photoelectrode in a large s...Photoelectrochemical water splitting can convert solar energy into clean hydrogen energy for storage.It is desirable to explore non-precious electrocatalysts for practical applications of a photoelectrode in a large scale.Here,we developed a facile spin-coating and in-situ photoelectrochemical reduction method to prepare a dispersed Cu electrocatalyst on a Si photocathode,which improves the performance remarkably.We find that thiourea in the precursor solution for spin-coating plays an important role in obtaining dispersed Cu particles on the surface of a Si photoelectrode.With thiourea in the precursor,the Cu/Si photocathode shows higher performance than the one without thiourea.Moreover,the Cu/Si photocathode also indicates good stability after 16 h illumination.展开更多
Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previou...Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.展开更多
Electrocatalysis, as a typical heterogeneous catalysis, generally occurs in the di-or tri-phase interfaces.Wettability is an important property for describing the balance of a gas-liquid-solid system. Therefore,the we...Electrocatalysis, as a typical heterogeneous catalysis, generally occurs in the di-or tri-phase interfaces.Wettability is an important property for describing the balance of a gas-liquid-solid system. Therefore,the wettability of reaction interface, especially hydrophilicity/hydrophobicity, plays an important role in the adsorption/desorption process of gas bubbles on the surface of the solid electrode. Herein, we present a comprehensive review of the wettability control of the electrode materials applied in electrocatalysis reactions, including hydrogen evolution reaction(HER), oxygen evolution reaction(OER), oxygen reduction reaction(ORR) and carbon dioxide reduction reaction(CO_(2) RR). Firstly, the basic theories of wettability as well as the impact on electrocatalysis were introduced in this review. Secondly, the overview of modifying methods of the wettability from electrocatalyst microstructure(structural modification, surface coating, introducing hydrophilic groups) and system design(electrode, device) were suggested. At last, the deficiencies and problems in the application of wettability control are discussed,and deeper and broader application prospects are proposed.展开更多
A series of Pt/C catalysts for proton exchange membrane fuel cells(PEMFCs) with various metal loadings is synthesized by a microwave-assisted polyol process via mixing an extremely stable platinum colloid(> 3 month...A series of Pt/C catalysts for proton exchange membrane fuel cells(PEMFCs) with various metal loadings is synthesized by a microwave-assisted polyol process via mixing an extremely stable platinum colloid(> 3 months’ shelf life) from single batch preparation with activated carbon ethylene glycol suspension.21 wt%, 42 wt% and 61 wt% Pt loadings are employed to showcase the advantages of the improved polyol process. The ultraviolet(UV)–visible spectra and ζ-potential measurements are conducted to monitor the wet chemistry process during catalyst preparation. The powder X-ray diffraction(XRD), transmission electron microscopy(TEM) and thermogravimetric analysis(TGA) characterizations are carried out on catalysts. The catalyst activities are investigated using electrochemical and single cell tests. The stability of Pt nanoparticle colloid is explored by ORR, cyclic voltammetry(CV) and ζ-potential measurements. The TEM results show the Pt particle sizes of the colloid, and the sizes of the 21 wt%, 42 wt% and 61 wt%Pt/C samples are 2.1–3.9 nm. Because of the high Pt dispersion, the Pt/C catalysts exhibit superior electroactivity toward ORR. In addition, four 61 wt% Pt/C catalysts made from the Pt colloid with 0–3 months’ shelf life show almost the same performance, which exhibits superior stability of the Pt colloid system without surfactant protection.展开更多
Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology.PMN-PT,as a single crystal ferroelectric substrate,has been widely used in the study...Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology.PMN-PT,as a single crystal ferroelectric substrate,has been widely used in the study of voltage control magnetism because of its excellent piezoelectric properties.However,most of the research based on PMN-PT only studies the influence of a single tensile(or compressive)stress on the magnetic properties due to the asymmetry of strain.In this work,we show the effect of different strains on the magnetic anisotropy of an Fe_(19)Ni_(81)/(011)PMN-PT heterojunction.More importantly,the(011)cut PMN-PT generates non-volatile strain,which provides an advantage when investigating the voltage manipulation of RF/microwave magnetic devices.As a result,a ferromagnetic resonance field tunability of 70 Oe is induced in our sample by the non-volatile strain.Our results provide new possibilities for novel voltage adjustable RF/microwave magnetic devices and spintronic devices.展开更多
Multiferroic properties in a polycrystalline terbium orthoferrite are investigated. Different thermomagnetic behaviors are observed in different magnetic fields, which is attributed to the suppression of the low tempe...Multiferroic properties in a polycrystalline terbium orthoferrite are investigated. Different thermomagnetic behaviors are observed in different magnetic fields, which is attributed to the suppression of the low temperature magnetic phase by an external magnetic field. Further studies reveal that the ferroelectricity originates from the spin configuration below 3.5 K. In addition, the magnetic field control of electric polarization and dielectric constant is observed, which suggests a magnetoelectric effect in TbFeO3. The origin of ferroelectricity in this rare-earth orthoferrite is discussed.展开更多
We synthesize the perovskite compound Sm Cr0.9Fe0.1O3 by the sol–gel method and investigate its exchange bias properties through thermomagnetic and isothermal magnetization measurements. The sign reversals of the exc...We synthesize the perovskite compound Sm Cr0.9Fe0.1O3 by the sol–gel method and investigate its exchange bias properties through thermomagnetic and isothermal magnetization measurements. The sign reversals of the exchange bias field are observed at the magnetization compensation temperatures 29.6 K and 96.2 K. It is demonstrated that the occurrence of the exchange bias originates from the antiferromagnetic coupling between the Cr-rich and Fe–Cr regions, of which the net magnetization is temperature-dependent. These results imply that there are potential applications in single systems with sign reversals of both magnetization and exchange bias.展开更多
As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potentia...As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potential of halide PVK solar cells as a highly competitive substitute to replace silicon-based solar cells in the photovoltaic market [2–6].展开更多
Nonvolatile manipulation of transport and magnetic properties by external electric field is significant for information storage. In this study, we investigate the electric field control of resistance and magnetization...Nonvolatile manipulation of transport and magnetic properties by external electric field is significant for information storage. In this study, we investigate the electric field control of resistance and magnetization in a magnetoelectric heterostructure comprising an electronic phase-separated La0.325Pr0.3Ca0.375MnO3(LPCMO) thin film and a ferroelectric(011)-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3(PMN-PT) substrate. In a room-temperature poled sample, the metal-toinsulator transition temperature of an LPCMO film increases and the resistance decreases with variation in the effect of the remnant strain. Meanwhile, the increase in the magnetization of the sample is observed as well. This effect would be beneficial for the development of novel storage devices with low power consumption.展开更多
Methane(CH_(4))holds great promise in replacing oil as a building block for chemical commodities[1].However,due to the low-polar nature and high C-H bond energy(439 kJ/mol)of CH_(4),the conversion of CH_(4)by traditio...Methane(CH_(4))holds great promise in replacing oil as a building block for chemical commodities[1].However,due to the low-polar nature and high C-H bond energy(439 kJ/mol)of CH_(4),the conversion of CH_(4)by traditional thermocatalysis requires harsh reaction conditions(e.g.high temperature and high pressure)and thus,is energy-consuming[2].To be worse,the production of undesired products like CO_(2)is unavoidable as a result of hydrocarbon combustion reactions[2].展开更多
As a zero-or near zero-emission energy carrier,hydrogen,especially"green hydrogen"from renewable energy and water,is the key piece for decarbonizing existing energy systems and transiting into a carbon-neutr...As a zero-or near zero-emission energy carrier,hydrogen,especially"green hydrogen"from renewable energy and water,is the key piece for decarbonizing existing energy systems and transiting into a carbon-neutral world[1,2].Unfortunately,challenges associated with storage and transportation greatly restrict the large-scale application of hydrogen energy,which requires the development of efficient hydrogen storage materials[3-5].Among the various proposed candidates,ammonia(NH_(3))is regarded as a promising hydrogen carrier owing to its low carbon footprint,high gravimetric/volumetric hydrogen storage capacity,easy liquidation,safe storage and transportation,and well-developed synthesis approach at the industrial scale[6-8].展开更多
In comparison to commercial alkaline water electrolysis technologies,proton-exchange membrane water electrolyzers(PEMWEs)offer intriguing advantages for hydrogen production,such as high current density,compact system ...In comparison to commercial alkaline water electrolysis technologies,proton-exchange membrane water electrolyzers(PEMWEs)offer intriguing advantages for hydrogen production,such as high current density,compact system design,and rapid response that is highly compatible with intermittent solar and wind energy[1].展开更多
Single-atom catalysts(SACs)have become one of the most considered research directions today,owing to their maximum atom utilization and simple structures,to investigate structure-activity relationships.In the field of...Single-atom catalysts(SACs)have become one of the most considered research directions today,owing to their maximum atom utilization and simple structures,to investigate structure-activity relationships.In the field of non-precious-metal electrocatalysts,atomically dispersed Fe-N4 active sites have been proven to possess the best oxygen reduction activity.Yet the majority of preparation methods remains complex and costly with unsatisfying controllability.Herein,we have designed a surface-grafting strategy to directly synthesize an atomically dispersed Fe-NVC electrocatalyst applied to the oxygen reduction reaction(ORR).Through an esterification process in organic solution,metal-containing precursors were anchored on the surface of carbon substrates.The covalent bonding effect could suppress the formation of aggregated particles during heat treatment.Melamine was further introduced as both a cost-effective nitrogen resource and blocking agent retarding the migration of metal atoms.The optimized catalyst has proven to have abundant atomically dispersed Fe-N4 active sites with enhanced ORR catalytic performance in acid condition.This method has provided new feasible ideas for the synthesis of SACs.展开更多
CuW(1-x)MoxO4 solid solution of CuWO4 and CuMoO4, which is a copper-based multi-component oxide semiconductor, possesses much narrower band gap than CuWO4. In theory, it can absorb a larger part of the visible spect...CuW(1-x)MoxO4 solid solution of CuWO4 and CuMoO4, which is a copper-based multi-component oxide semiconductor, possesses much narrower band gap than CuWO4. In theory, it can absorb a larger part of the visible spectrum, widening the use of solar spectroscopy and obtaining a higher photo-to-chemical conversion efficiency. In this study, CuW(1-x)MoxO4 thin-film photoanodes on conducting glass were prepared using a simple and low-cost spray pyrolysis method. The resulting CuW(1-x)MoxO4 photoanodes perform higher photocurrent than CuWO4 photoanodes under AM 1.5 G simulated sunlight illumination(100 m W cm^(-2))in 0.1 mol L^(-1) phosphate buffer at pH 7. Combined with IPCE and Mott-Schottky analysis, the enhancement of the photocurrent is due to the improvement of photon utilization and the increase of carrier concentration with the incorporation of Mo atoms. Moreover, with the optimal Mo/W atomic ratio,the photocurrent density increases obviously from 0.07 to 0.46 m A cm^(-2) at 1.23 V(RHE) bias. In addition, compared with particle-assembled thin-film photoanodes prepared by solidphase reaction and drop-necking treatment, the photoanodes prepared by spray pyrolysis have obvious advantages in terms of reducing resistance and facilitating charge transport.展开更多
The synthesis of perovskite oxynitrides,which are promising photoanode candidates for solar energy conversion,is normally accomplished by high-temperature ammonolysis of oxides and carbonate precursors,thus making the...The synthesis of perovskite oxynitrides,which are promising photoanode candidates for solar energy conversion,is normally accomplished by high-temperature ammonolysis of oxides and carbonate precursors,thus making the deposition of their planar films onto conductive substrates challenging.Here,we proposed a facile strategy to prepare a series of perovskite oxynitride films.Taking SrTaO_(2)N as a prototype,we prepared SrTaO_(2)N films on Ta foils under NH_(3) flow by utilizing the vaporized SrCl_(2)/SrCO_(3) eutectic salt.The SrTaO_(2)N films exhibit solar water-splitting photocurrents of 3.0 mA cm^(-2) at 1.23 V vs.RHE(reversible hydrogen electrode),which increases by 270%compared to the highest photocurrent(1.1 mA cm^(-2) at 1.23 V vs.RHE)of SrTaO_(2)N reported in the literature.This strategy may also be applied to directly prepare a series of perovskite oxynitride films on conductive substrates such as ATaO_(2)N(A=Ca,Ba)and ANbO_(2)N(A=Sr,Ba).展开更多
Artificial photosynthesis provides a sustainable approach toward a carbon–neutral or net-zero economy[1].Photoelectrochemical(PEC)water splitting is one of the artificial photosynthesis techniques that directly conve...Artificial photosynthesis provides a sustainable approach toward a carbon–neutral or net-zero economy[1].Photoelectrochemical(PEC)water splitting is one of the artificial photosynthesis techniques that directly convert intermittent sunlight into clean and storable H2 fuel[2].Due to the complex 4e-/4H+process coupled with O–O bond formation step,it is widely acknowledged that the oxidation half-reaction is the efficiency-limiting factor in water splitting[3].Therefore,developing highly efficient and robust water-oxidation photoanodes is crucial for realizing practical solar fuel production.展开更多
基金the support of the National Natural Science Foundation of China(51702087,21673066)the Project funded by the China Postdoctoral Science Foundation(2019M652516)。
文摘Structure manipulation of photocatalysts at an atomic scale is a promising way to improve its photocatalytic performance.Herein,we realize the anchoring of single Ni atoms on the ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies.Experimental results demonstrate that single Ni atoms induce the formation of NiO-M(Zn/In) atomic interface,which can efficiently promote the carriers separation and prolong the carrier life time.In addition,in situ electron spin resonance spectroscopy(ESR) confirms that the single Ni atoms act as an electron trapping center for protons reduction.As a result,the single Ni atoms decorated ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies(Ni/ZnIn_(2)S_(4)-RVs) shows a hydrogen evolution rate up to 89.4 μmol h^(-1), almost 5.7 and 2.3 times higher compared to that of ZnIn_(2)S_(4) nanosheets with poor sulfur vacancies and rich sulfur vacancies(denoted as ZnIn_(2)S_(4)-PVs and ZnIn_(2)S_(4)-RVs).This work opens up a new perspective manipulating the single-atom cocatalyst and sulfur vacancy on sulfide supports for improving photocatalytic hydrogen evolution.
基金supported by the National Key Research and Development Program of China(2022YFC3401600)the National Natural Science Foundation of China(32171372)+2 种基金the Program A for Outstanding PhD Candidate of Nanjing University(202102A004)the Logistics Research Projects(BWS20J017)the University of Sydney–China Scholarship Council(USYD-CSC)scholarship(202008320366)。
文摘The transplantation of full-thickness skin grafts(FTSGs)is important for reconstructing skin barrier and promoting wound healing.Sufficient oxygen supply is closely related to the success of skin grafting.However,full-thickness oxygen delivery is limited by the poor oxygen permeability of skin.Oxygen-releasing sutures(O_(2)sutures)were developed to facilitate oxygen penetration through full-thickness skin.The O_(2)sutures delivered 100 times more oxygen than topical gaseous oxygen therapy at a 15 mm depth in the skin model.Under extreme hypoxia(<0.5%O_(2),v/v),O_(2)sutures could also promote endothelial cell proliferation.After the transplantation of FTSGs in mice,O_(2)sutures accelerated blood re-perfusion and increased the survival area of the skin graft.It is expected that O_(2)sutures will be adopted in clinical applications to increase the success rate of full-thickness skin transplantation.
文摘Planar films of pure and Ti^(4+)-dopedβ-Fe_(2)O_(3)were prepared by a spray pyrolysis method.X-ray diffraction patterns and Raman spectra of the metastableβ-Fe_(2)O_(3)film showed that its thermal stability was significantly improved because of covalent bonds in the interfaces between the film and substrate,while only weak Van der Waals bonds existed at the interfaces within the particle-assembledβ-Fe_(2)O_(3)film prepared by electrophoretic deposition.The as-prepared planar films were thus able to withstand higher annealing temperature and stronger laser irradiation power in comparison with theβ-Fe_(2)O_(3)particle-assembly.Ti^(4+)doping was used to increase the concentration of carriers in the metastableβ-Fe_(2)O_(3)film.Compared with pureβ-Fe_(2)O_(3)photoanodes,the highest saturated photocurrent for water splitting over the Ti^(4+)-dopedβ-Fe_(2)O_(3)photoanode was increased by a factor of approximately three.Theβ-Fe_(2)O_(3)photoanode exhibited photochemical stability for water splitting for a duration exceeding 100 h,which indicates its important potential application in solar energy conversion.
基金supported primarily by the National Key Research and Development Program of China(2018YFE0208500)the Major Research Plan of the National Natural Science Foundation of China(91963206)+4 种基金the National Natural Science Foundation of China(U1508202,51627810,51972164)the Natural Science Foundation of Jiangsu Province(SBK2018022120)the open fund of Wuhan National Laboratory for Optoelectronics(2018WNLOKF020)the open fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies(EEST2018-1)the civil aerospace technology preliminary research project of the State Administration of Science,Technology and Industry for National Defense。
文摘Developing highly active,cost-effective,and environmental friendly oxygen evolution reaction(OER)electrocatalysts facilitates various(photo)electrochemical processes.In this work,Fe3N nanoparticles encapsulated into N-doped graphene nanoshells(Fe_(3)N@NG)as OER electrocatalysts in alkaline media were reported.Both the experimental and theoretical comparison between Fe_(3) N@NG and Fe_(3)N/NG,specifically including in situ Mossbauer analyses,demonstrated that the NG nanoshells improved interfacial electron transfer process from Fe_(3)N to NG to form high-valence Fe^(4+)ions(Fe^(4+)@NG),thus modifying electronic properties of the outer NG shells and subsequently electron transfer from oxygen intermediate to NG nanoshells for OER catalytic process.Meanwhile,the NG nanoshells also protected Fe-based cores from forming OER inactive and insulated Fe_(2)O_(3),leading to high OER stability.As a result,the as-formed Fe^(4+)@NG shows one of the highest electrocatalytic efficiency among reported Fe-based OER electrocatalysts,which can as well highly improve the photoelectrochemical water oxidation when used as the cocatalysts for the Fe_(2)O_(3) nanoarray photoanode.
基金supported by the International S&T Cooperation Program of China (2017YFE0120700)the National Natural Science foundation of China (21875105, 61674097)+1 种基金the National Scientific Instrument Develop Major Project of National Natural Science Foundation of China (51627810)the advanced research program of Education Institute of Jiangsu Province (PPZY2015A033)
文摘Photoelectrochemical water splitting can convert solar energy into clean hydrogen energy for storage.It is desirable to explore non-precious electrocatalysts for practical applications of a photoelectrode in a large scale.Here,we developed a facile spin-coating and in-situ photoelectrochemical reduction method to prepare a dispersed Cu electrocatalyst on a Si photocathode,which improves the performance remarkably.We find that thiourea in the precursor solution for spin-coating plays an important role in obtaining dispersed Cu particles on the surface of a Si photoelectrode.With thiourea in the precursor,the Cu/Si photocathode shows higher performance than the one without thiourea.Moreover,the Cu/Si photocathode also indicates good stability after 16 h illumination.
基金supported by the National Natural Science Foundation of China(22279052)the China Postdoctoral Science Foundation(2023M741613)。
文摘Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.
基金supported by the Fundamental Research Funds for the Central Universities(2242021k30028)the Natural Science Foundation of Jiangsu Province(BK20200991).
文摘Electrocatalysis, as a typical heterogeneous catalysis, generally occurs in the di-or tri-phase interfaces.Wettability is an important property for describing the balance of a gas-liquid-solid system. Therefore,the wettability of reaction interface, especially hydrophilicity/hydrophobicity, plays an important role in the adsorption/desorption process of gas bubbles on the surface of the solid electrode. Herein, we present a comprehensive review of the wettability control of the electrode materials applied in electrocatalysis reactions, including hydrogen evolution reaction(HER), oxygen evolution reaction(OER), oxygen reduction reaction(ORR) and carbon dioxide reduction reaction(CO_(2) RR). Firstly, the basic theories of wettability as well as the impact on electrocatalysis were introduced in this review. Secondly, the overview of modifying methods of the wettability from electrocatalyst microstructure(structural modification, surface coating, introducing hydrophilic groups) and system design(electrode, device) were suggested. At last, the deficiencies and problems in the application of wettability control are discussed,and deeper and broader application prospects are proposed.
基金financial supports from National Key R&D Plan of China (2017YFB0102803)the National Natural Science Foundation of China (21676135)+8 种基金Scientific Instrument Develop Major Project of National Natural Science Foundation of China (51627810)Joint Funds of the National Natural Science Foundation and Liaoning of China (U1508202)Key R&D programs in Jiangsu (BE2018051)“333” project of Jiangsu Province (BRA2018007)Natural Science Foundation of Jiangsu Province (BK20161273, BK20181199)the Graduate Innovation Foundation of Nanjing university (2017ZDL05)support of PAPD of Jiangsu Higher Education Institutions“Six Talent Peaks Program” of Jiangsu ProvinceFundamental Research Funds for the Central Universities, China。
文摘A series of Pt/C catalysts for proton exchange membrane fuel cells(PEMFCs) with various metal loadings is synthesized by a microwave-assisted polyol process via mixing an extremely stable platinum colloid(> 3 months’ shelf life) from single batch preparation with activated carbon ethylene glycol suspension.21 wt%, 42 wt% and 61 wt% Pt loadings are employed to showcase the advantages of the improved polyol process. The ultraviolet(UV)–visible spectra and ζ-potential measurements are conducted to monitor the wet chemistry process during catalyst preparation. The powder X-ray diffraction(XRD), transmission electron microscopy(TEM) and thermogravimetric analysis(TGA) characterizations are carried out on catalysts. The catalyst activities are investigated using electrochemical and single cell tests. The stability of Pt nanoparticle colloid is explored by ORR, cyclic voltammetry(CV) and ζ-potential measurements. The TEM results show the Pt particle sizes of the colloid, and the sizes of the 21 wt%, 42 wt% and 61 wt%Pt/C samples are 2.1–3.9 nm. Because of the high Pt dispersion, the Pt/C catalysts exhibit superior electroactivity toward ORR. In addition, four 61 wt% Pt/C catalysts made from the Pt colloid with 0–3 months’ shelf life show almost the same performance, which exhibits superior stability of the Pt colloid system without surfactant protection.
文摘Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology.PMN-PT,as a single crystal ferroelectric substrate,has been widely used in the study of voltage control magnetism because of its excellent piezoelectric properties.However,most of the research based on PMN-PT only studies the influence of a single tensile(or compressive)stress on the magnetic properties due to the asymmetry of strain.In this work,we show the effect of different strains on the magnetic anisotropy of an Fe_(19)Ni_(81)/(011)PMN-PT heterojunction.More importantly,the(011)cut PMN-PT generates non-volatile strain,which provides an advantage when investigating the voltage manipulation of RF/microwave magnetic devices.As a result,a ferromagnetic resonance field tunability of 70 Oe is induced in our sample by the non-volatile strain.Our results provide new possibilities for novel voltage adjustable RF/microwave magnetic devices and spintronic devices.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB932304 and 2014AA032904)the National Natural ScienceFoundation of China(Grant Nos.11174130 and U1232210)
文摘Multiferroic properties in a polycrystalline terbium orthoferrite are investigated. Different thermomagnetic behaviors are observed in different magnetic fields, which is attributed to the suppression of the low temperature magnetic phase by an external magnetic field. Further studies reveal that the ferroelectricity originates from the spin configuration below 3.5 K. In addition, the magnetic field control of electric polarization and dielectric constant is observed, which suggests a magnetoelectric effect in TbFeO3. The origin of ferroelectricity in this rare-earth orthoferrite is discussed.
基金Project supported by the National Basic Research Program of China(Grant Nos.2014AA032904 and 2009CB929501)the National Natural Science Foundation of China(Grant Nos.11174130 and U1232210)
文摘We synthesize the perovskite compound Sm Cr0.9Fe0.1O3 by the sol–gel method and investigate its exchange bias properties through thermomagnetic and isothermal magnetization measurements. The sign reversals of the exchange bias field are observed at the magnetization compensation temperatures 29.6 K and 96.2 K. It is demonstrated that the occurrence of the exchange bias originates from the antiferromagnetic coupling between the Cr-rich and Fe–Cr regions, of which the net magnetization is temperature-dependent. These results imply that there are potential applications in single systems with sign reversals of both magnetization and exchange bias.
基金supported by the National Key R&D Program of China (2018YFE0208500)the Japan Science and Technology Agency (JST) Mirai program (JPMJMI17EA)。
文摘As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potential of halide PVK solar cells as a highly competitive substitute to replace silicon-based solar cells in the photovoltaic market [2–6].
基金Project supported by the National Natural Science Foundation of China(Grant No.51571108)
文摘Nonvolatile manipulation of transport and magnetic properties by external electric field is significant for information storage. In this study, we investigate the electric field control of resistance and magnetization in a magnetoelectric heterostructure comprising an electronic phase-separated La0.325Pr0.3Ca0.375MnO3(LPCMO) thin film and a ferroelectric(011)-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3(PMN-PT) substrate. In a room-temperature poled sample, the metal-toinsulator transition temperature of an LPCMO film increases and the resistance decreases with variation in the effect of the remnant strain. Meanwhile, the increase in the magnetization of the sample is observed as well. This effect would be beneficial for the development of novel storage devices with low power consumption.
基金support from the Program from Guangdong Introducing Innovative and Enterpreneurial Teams(2019ZT08L101 and RCTDPT-2020-001)the University Development Fund(UDF01001159)+4 种基金the National Natural Science Foundation of China(No,1805234,22075240,and 21972065)the Young Scientists Fund of the National Natural Science Foundation of China(No.52202306)the Shenzhen Key Laboratory of Eco materials and Renewable Energy(ZDSYS20200922160400001)the Shenzhen Natural Science Foundation(GXWD20201231105722002-20200824163747001)the NSF of Jiangsu Province(No.BK20220006).
文摘Methane(CH_(4))holds great promise in replacing oil as a building block for chemical commodities[1].However,due to the low-polar nature and high C-H bond energy(439 kJ/mol)of CH_(4),the conversion of CH_(4)by traditional thermocatalysis requires harsh reaction conditions(e.g.high temperature and high pressure)and thus,is energy-consuming[2].To be worse,the production of undesired products like CO_(2)is unavoidable as a result of hydrocarbon combustion reactions[2].
文摘As a zero-or near zero-emission energy carrier,hydrogen,especially"green hydrogen"from renewable energy and water,is the key piece for decarbonizing existing energy systems and transiting into a carbon-neutral world[1,2].Unfortunately,challenges associated with storage and transportation greatly restrict the large-scale application of hydrogen energy,which requires the development of efficient hydrogen storage materials[3-5].Among the various proposed candidates,ammonia(NH_(3))is regarded as a promising hydrogen carrier owing to its low carbon footprint,high gravimetric/volumetric hydrogen storage capacity,easy liquidation,safe storage and transportation,and well-developed synthesis approach at the industrial scale[6-8].
文摘In comparison to commercial alkaline water electrolysis technologies,proton-exchange membrane water electrolyzers(PEMWEs)offer intriguing advantages for hydrogen production,such as high current density,compact system design,and rapid response that is highly compatible with intermittent solar and wind energy[1].
基金This work was partially supported by National Key R&D Plan of China(No.2016YFB0101308)the National Natural Science Foundation of China(Nos.21802069,21676135,and U1508202)+1 种基金China Postdoctoral Science Foundation(No.2018M642213)“333”project of Jiangsu Province(No.BRA2018007).
文摘Single-atom catalysts(SACs)have become one of the most considered research directions today,owing to their maximum atom utilization and simple structures,to investigate structure-activity relationships.In the field of non-precious-metal electrocatalysts,atomically dispersed Fe-N4 active sites have been proven to possess the best oxygen reduction activity.Yet the majority of preparation methods remains complex and costly with unsatisfying controllability.Herein,we have designed a surface-grafting strategy to directly synthesize an atomically dispersed Fe-NVC electrocatalyst applied to the oxygen reduction reaction(ORR).Through an esterification process in organic solution,metal-containing precursors were anchored on the surface of carbon substrates.The covalent bonding effect could suppress the formation of aggregated particles during heat treatment.Melamine was further introduced as both a cost-effective nitrogen resource and blocking agent retarding the migration of metal atoms.The optimized catalyst has proven to have abundant atomically dispersed Fe-N4 active sites with enhanced ORR catalytic performance in acid condition.This method has provided new feasible ideas for the synthesis of SACs.
基金supported by the National Basic Research Program of China (973 Program, 2013CB632404)National Natural Science Foundation of China (21473090 and 51272102)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘CuW(1-x)MoxO4 solid solution of CuWO4 and CuMoO4, which is a copper-based multi-component oxide semiconductor, possesses much narrower band gap than CuWO4. In theory, it can absorb a larger part of the visible spectrum, widening the use of solar spectroscopy and obtaining a higher photo-to-chemical conversion efficiency. In this study, CuW(1-x)MoxO4 thin-film photoanodes on conducting glass were prepared using a simple and low-cost spray pyrolysis method. The resulting CuW(1-x)MoxO4 photoanodes perform higher photocurrent than CuWO4 photoanodes under AM 1.5 G simulated sunlight illumination(100 m W cm^(-2))in 0.1 mol L^(-1) phosphate buffer at pH 7. Combined with IPCE and Mott-Schottky analysis, the enhancement of the photocurrent is due to the improvement of photon utilization and the increase of carrier concentration with the incorporation of Mo atoms. Moreover, with the optimal Mo/W atomic ratio,the photocurrent density increases obviously from 0.07 to 0.46 m A cm^(-2) at 1.23 V(RHE) bias. In addition, compared with particle-assembled thin-film photoanodes prepared by solidphase reaction and drop-necking treatment, the photoanodes prepared by spray pyrolysis have obvious advantages in terms of reducing resistance and facilitating charge transport.
基金This work is supported by the National Key Research and Development Program of China(No.2018YFA0209303)the National Natural Science Foundation of China(Nos.U1663228 and 21473090)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.Z.L.thanks Prof.Xizhang Wang(School of Chemistry and Chemical Engineering,Nanjing University)for the nice discussion.
文摘The synthesis of perovskite oxynitrides,which are promising photoanode candidates for solar energy conversion,is normally accomplished by high-temperature ammonolysis of oxides and carbonate precursors,thus making the deposition of their planar films onto conductive substrates challenging.Here,we proposed a facile strategy to prepare a series of perovskite oxynitride films.Taking SrTaO_(2)N as a prototype,we prepared SrTaO_(2)N films on Ta foils under NH_(3) flow by utilizing the vaporized SrCl_(2)/SrCO_(3) eutectic salt.The SrTaO_(2)N films exhibit solar water-splitting photocurrents of 3.0 mA cm^(-2) at 1.23 V vs.RHE(reversible hydrogen electrode),which increases by 270%compared to the highest photocurrent(1.1 mA cm^(-2) at 1.23 V vs.RHE)of SrTaO_(2)N reported in the literature.This strategy may also be applied to directly prepare a series of perovskite oxynitride films on conductive substrates such as ATaO_(2)N(A=Ca,Ba)and ANbO_(2)N(A=Sr,Ba).
文摘Artificial photosynthesis provides a sustainable approach toward a carbon–neutral or net-zero economy[1].Photoelectrochemical(PEC)water splitting is one of the artificial photosynthesis techniques that directly convert intermittent sunlight into clean and storable H2 fuel[2].Due to the complex 4e-/4H+process coupled with O–O bond formation step,it is widely acknowledged that the oxidation half-reaction is the efficiency-limiting factor in water splitting[3].Therefore,developing highly efficient and robust water-oxidation photoanodes is crucial for realizing practical solar fuel production.