期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity
1
作者 Chi XU Yang LI +1 位作者 Mingyue LU Zhendong DAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第3期355-370,共16页
In this work,the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction.By utilizin... In this work,the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction.By utilizing the variational principle of virtual work,the governing equations and the associated standard boundary conditions are systematically extracted,and the thermal effect,equivalent to the induced thermal load,is explicitly assessed by using the nonlocal heat conduction law.The stressdriven constitutive integral equation is equivalently transformed into a differential form with two non-standard constitutive boundary conditions.By employing the eigenvalue method,the critical buckling loads of the beams with different boundary conditions are obtained.The numerically predicted results reveal that the growth of the nonlocal parameter leads to a consistently strengthening effect on the dimensionless critical buckling loads for all boundary cases.Additionally,the effects of the influential factors pertinent to the nonlocal heat conduction on the buckling behavior are carefully examined. 展开更多
关键词 size effect stress-driven nonlocal model constitutive boundary condition nonlocal heat conduction functionally graded(FG)beam buckling load
下载PDF
Evolution of surfaces and mechanisms of contact electrification between metals and polymers
2
作者 Lin-Feng Wang Yi Dong +3 位作者 Min-Hao Hu Jing Tao Jin Li Zhen-Dong Dai 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期572-579,共8页
Contact electrification(CE)is a pretty common phenomenon,but still is poorly understood.The long-standing controversy over the mechanisms of CE related to polymers is particularly intense due to their complexity.In th... Contact electrification(CE)is a pretty common phenomenon,but still is poorly understood.The long-standing controversy over the mechanisms of CE related to polymers is particularly intense due to their complexity.In this paper,the CE between metals and polymers is systematically studied,which shows the evolution of surfaces is accompanied by variations of CE outputs.The variations of CE charge quantity are closely related to the creep and deformation of the polymer and metal surfaces.Then the relationship between CE and polymer structures is put forward,which is essentially determined by the electronegativity of elements and the functional groups in the polymers.The effects of load and contact frequency on the CE process and outputs are also investigated,indicating the increase of CE charge quantity with load and frequency.Material transfer from polymer to metal is observed during CE while electrons transfer from metal to polymer,both of which are believed to have an influence on each other.The findings advance our understanding of the mechanism of CE between metal and polymers,and provides insights into the performance of CE-based application in various conditions,which sheds light on the design and optimization of CE-based energy harvest and self-powered sensing devices. 展开更多
关键词 contact electrification surface evolution material structures material transfer
下载PDF
Ionic polymer metal composites actuators with enhanced driving performance by incorporating graphene quantum dots 被引量:1
3
作者 YIN Guo-xiao HE Qing-song +2 位作者 YU Min WU Yu-wei XU Xian-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1412-1422,共11页
In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,... In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots. 展开更多
关键词 graphene quantum dots hybrid membrane ionic polymer metal composites actuation performance
下载PDF
Effective metal mold method for the production of bionic adhesives based on electrochemical modifications
4
作者 Cong YUAN Keju JI +4 位作者 Yiqiang TANG Zizhuo WANG Enhua CUI Jian CHEN Zhendong DAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期332-340,共9页
Bionic adhesives with tip-expanded microstructural arrays have attracted considerable interest owing to their high adhesive performance at low preloads.Their mainstream manufacturing method is molding.Due to most mold... Bionic adhesives with tip-expanded microstructural arrays have attracted considerable interest owing to their high adhesive performance at low preloads.Their mainstream manufacturing method is molding.Due to most molds are made of silicon or silicon-based soft templates,and have poor wear resistant or vulnerability to high temperature,limiting their use in large-scale manufacturing.Nickel is widely used as an embossing mold in the micro/nano-imprint industrial process owing to its good mechanical properties.However,the processing of metal molds for the fabrication of tip-expanded microstructural arrays is extremely challenging.In this study,using electrodeposition techniques,the shape of the micropores is modified to obtain end-controlled pores.The effect of the non-uniformity of the electric field on the microporous morphology in the electrodeposition process is systematically investigated.Furthermore,the mechanism of non-uniformity evolution of the microporous morphology is revealed.The optimized microporous metal array is used as a mold to investigate the cavity evolution laws of the elastic cushions under pre-load during the manufacturing process.As a result,typical bionic adhesives with tip-expansion are obtained.Moreover,corresponding adhesion mechanics are analyzed.The results show that electrochemical modifications have broad application prospects in the fabrication of tip-expanded microstructures,providing a new method for the large-scale fabrication of bionic adhesives based on metal molds. 展开更多
关键词 Bionic adhesive Dry adhesion ELECTRO-DEPOSITION Metal mold Micro/nano-imprint Micro-porous
原文传递
Resistance reduction of patterned surface inspired by cuticle structure of Achalinus spinalis
5
作者 Jiahui ZHAO Keju JI +6 位作者 Qin CHEN Muhammad Niaz KHAN Chongwen TU Ze MA Jianming WU Jian CHEN Zhendong DAI 《Friction》 SCIE EI CAS CSCD 2023年第7期1359-1370,共12页
The crawling process of snakes is known to have fascinating tribological phenomena,whereas investigations on their frictional properties depending on patterned cuticles are insufficient.In this study,we have designed ... The crawling process of snakes is known to have fascinating tribological phenomena,whereas investigations on their frictional properties depending on patterned cuticles are insufficient.In this study,we have designed and fabricated biomimetic microstructures inspired by the geometric microunits of Achalinus spinalis cuticle using polyurethane acrylate(PUA)material and performed its tribological analysis.The micro-morphology of this Achalinus-inspired textured polymer surface(AITPS)is characterized by the closely and evenly quasi-rectangular microgrooves,periodically arranged along certain orientations.We have compared the frictional performance of our fabricated AITPS with other competitive microstructure,using a smooth steel ball and commercial clay as an interacting surface.After performing massive friction tests with steel ball and clay,AITPS still maintains good resistance reduction performed compared to the patterned surface with straight microgrooves,which is most likely due to the reduction of actual contact areas at the frictional interface. 展开更多
关键词 BIOMIMETIC MICROSTRUCTURE FRICTION resistance reduction
原文传递
Switchable shape memory polymer bio-inspired adhesive and its application for unmanned aerial vehicle landing
6
作者 Qingsong HE Zefang ZHAO +7 位作者 Qiyun ZHONG Siyuan LIU Kai DENG Yongqi LIU Ning ZHANG Zijie ZHAO Fengjiang ZHAN Jianfeng ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期380-390,共11页
Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adh... Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adhesion performance and excellent dynamic switching properties is still a challenge.A Shape Memory Polymer Bio-inspired Adhesive(SMPBA)was successfully developed,well realizing high adhesion(about 337 kPa),relatively low preload(about90 kPa),high adhesion-to-preload ratio(about 3.74),high switching ratio(about 6.74),and easy detachment,which are attributed to the controlled modulus and contact area by regulating temperature and the Shape Memory Effect(SME).Furthermore,SMPBA exhibits adhesion strength of80–337 kPa on various surfaces(silicon,iron,and aluminum)with different roughness(Ra=0.021–10.280)because of the conformal contact,reflecting outstanding surface adaptability.The finite element analysis verifies the bending ability under different temperatures,while the adhesion model analyzes the influence of preload on contact area and adhesion.Furthermore,an Unmanned Aerial Vehicle(UAV)landing device with SMPBA was designed and manufactured to achieve UAV landing on and detaching from various surfaces.This study provides a novel switchable bio-inspired adhesive and UAV landing method. 展开更多
关键词 Bio-inspired adhesive Shape memory polymers Switchable adhesive Unmanned aerial vehicle LANDING
原文传递
Review on Improvement,Modeling,and Application of Ionic Polymer Metal Composite Artificial Muscle 被引量:1
7
作者 Qingsong He Guoxiao Yin +6 位作者 David Vokoun Qi Shen Ji Lu Xiaofang Liu Xianrui Xu Min Yu Zhendong Dai 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第2期279-298,共20页
Recently,researchers have concentrated on studying ionic polymer metal composite(IPMC)artificial muscle,which has numerous advantages including a relatively large strain under low input voltage,flexibility,high respon... Recently,researchers have concentrated on studying ionic polymer metal composite(IPMC)artificial muscle,which has numerous advantages including a relatively large strain under low input voltage,flexibility,high response,low noise,light weight,and high driving energy density.This paper reports recent developments in IPMC artificial muscle,including improvement methods,modeling,and applications.Different types of IPMCs are described,along with various methods for overcoming some shortcomings,including improvement of Nafion matrix membranes,surface preparation of Nafion membranes,the choice of high-performing electrodes,and new electro-active polymers for enhancing the properties of IPMCs.IPMC models are also reviewed,providing theoretical guidance for studying the performance and applications of IPMCs.Successful applications such as bio-inspired robots,opto-mechatronic systems,and medical engineering are discussed. 展开更多
关键词 Ionic polymer metal composite Artificial muscle IMPROVEMENT MODEL Bio-inspired application
原文传递
Effects of Cu^2+ Counter Ions on the Actuation Performance of Flexible Ionic Polymer Metal Composite Actuators 被引量:1
8
作者 Maolin Wang Min Yu +3 位作者 Mingyue Lu Qingsong He Keju Ji Lei Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第6期1047-1056,共10页
The resistance of Ionic Polymer Metal Composite (IPMC) electrodes plays an important role in the actuation performance of IPMC actuators. Owing to crack formation on the surface of platinum electrode, the surface re... The resistance of Ionic Polymer Metal Composite (IPMC) electrodes plays an important role in the actuation performance of IPMC actuators. Owing to crack formation on the surface of platinum electrode, the surface resistance of the electrode increases, which greatly limits its actuating performance. In this paper, we proposed a new method of dynamic self-repair electrodes by ex- changing Cu2+ into the IPMC basement membrane. IPMC actuators with Cu2+ were prepared and the actuation performance in the air was subsequently measured. Compared with conventional IPMC actuators containing Li+ counter ions, those containing Cu2+ counter ions exhibited 2 times - 3 times larger displacement and 2 times -3 times bigger blocking force. In the morphology observation, we found that many small copper particles scattered in the middle of cracks after several bending cycles, which leads to an obvious decrease in electrode resistance. In the Cyclic Voltammetry (CV) scan measurement, we observed that the oxidation reaction of copper alternates with reduction reaction of copper ions with the change of voltage polarity, which was a dynamic process. Based on these analyses, it is concluded that the presence of Cu2+ can repair the damaged electrodes and induce lower electrode resistance, thus leading to the performance improvement of actuation. 展开更多
关键词 ionic polymer metal composite electrode resistance Cu^2+ counter ions actuation performance
原文传递
Advanced Electro-active Dry Adhesive Actuated by an Artificial Muscle Constructed from an Ionic Polymer Metal Composite Reinforced with Nitrogen-doped Carbon Nanocages 被引量:8
9
作者 Qingsong He Xu Yang +4 位作者 Zhongyuan Wang Jin Zhao Min Yu Zhen Hu Zhendong Dai 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第3期567-578,共12页
An advanced electro-active dry adhesive, which was composed of a mushroom-shaped tibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carb... An advanced electro-active dry adhesive, which was composed of a mushroom-shaped tibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs), was developed to imitate the actuation of a gecko's toe. The properties of the NCNC-reinforced Nation membrane, the electro- mechanical properties of the NCNC-reinforced IPMC, and the related electro-active adhesion ability were investigated. The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane, and there was a seamless connection with no clear interface between the dry adhesive and the IPMC. Our 0.1 wt% NCNC/Nation-IPMC actuator shows a displacement and force that are 1.6 - 2 times higher than those of the recast Nafion-IPMC. This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nation membrane, as well as interactions between the NCNCs and the sulfonated groups of the Nation. The NCNC/Nation-IPMC was used to effectively actuate the mushroom-shaped dry adhesive. The normal adhesion forces were 7.85 raN, 12.1 mN, and 51.7 mN at sinusoidal voltages of 1.5 V, 2.5 V, and 3.5 V, respectively, at 0.1 Hz. Under the bionic leg trail, the normal and shear forces were approximately 713.5 mN (159 mN·cm^-2) and 1256.6 mN (279 mN·cm^-2), respectively, which satisfy the required adhesion. This new electro-active dry adhesive can be applied for active, distributed actuation and flexible grip in robots. 展开更多
关键词 electro-active dry adhesive bionic ionic polymer metal composite Nation membrane carbon nanocage
原文传递
Optimized Bio-inspired Micro-pillar Dry Adhesive and Its Application for an Unmanned Aerial Vehicle Adhering on and Detaching from a Ceiling 被引量:3
10
作者 Qingsong He Xianrui Xu +8 位作者 Zhiwei Yu Kai Huo Zhaoyang Wang Nuo Chen Xuean Sun Gui Yin Peile Du Yang Li Zhendong Dai 《Journal of Bionic Engineering》 SCIE EI CSCD 2020年第1期45-54,共10页
Various bio-inspired dry adhesive materials have been investigated.In this work,lithography and silicon deep etching method were used to fabricate bio-inspired micro-pillar dry adhesive materials of which the paramete... Various bio-inspired dry adhesive materials have been investigated.In this work,lithography and silicon deep etching method were used to fabricate bio-inspired micro-pillar dry adhesive materials of which the parameters,such as side length,Height to Side length Aspect Ratio(HSAR),and inter-pillar Distance to Side length Aspect Ratio(DSAR)were comprehensively studied to obtain a dry adhesive with high adhesion.An orthogonal array method was designed and a series of fabrication experiments were conducted to identify optimum parameters,which resulted in a high normal adhesion of 2.98 N·cm^-2 and a shear adhesion of 9.59 N·cm^-2.An adhesion and desorption device was further designed on basis of the optimum dry adhesive,which enables an Unmanned Aerial Vehicle(UAV)to successfully adhere on and detach from a ceiling.This would allow an UAV to stay aloft for prolonged time,which could be invaluable to many applications,such as energy conservation and aerial detection. 展开更多
关键词 BIO-INSPIRED DRY ADHESIVE ORTHOGONAL array method UAV adhere CEILING
原文传递
The square rod-shaped ionic polymer-metal composite and its application in interventional surgical guide device 被引量:3
11
作者 Qingsong He Kai Huo +3 位作者 Xianrui Xu Yinghao Yue Guoxiao Yin Min Yu 《International Journal of Smart and Nano Materials》 SCIE EI 2020年第2期159-172,共14页
Ionic polymer-metal composite(IPMC)is an electro-active polymer material,which has many advantages such as small size,light weight,low driving voltage,large strain,and good biocompatibility.However,the conventional sh... Ionic polymer-metal composite(IPMC)is an electro-active polymer material,which has many advantages such as small size,light weight,low driving voltage,large strain,and good biocompatibility.However,the conventional sheet IPMC has the shortcoming of only bending in the two-dimensional plane,which greatly limits the application of IPMC in the field of interventional surgery.In this work,a square rodshaped IPMC with multi-degree-of-freedom motion was fabricated,and the displacement and blocking force of the square rod-shaped IPMC in different directions are measured and analyzed under the DC voltage signal.An interventional catheter was designed using the square rod-shaped IPMC in order to achieve active guidance,and a simulation experiment platform and a model of human aorta were built to successfully complete the in vitro simulation experiment of interventional surgery,which preliminarily verified the feasibility of the square rod-shaped IPMC in the field of interventional surgery. 展开更多
关键词 Square rod-shaped IPMC guiding device interventional surgery simulation experiment
原文传递
Contact Electrification and Adhesion Between Carbon Nanotube and Graphene on Metal Surfaces: Insights from First-principles Study
12
作者 Jing Tao Linfeng Wang +1 位作者 Jin Li Zhendong Dai 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第1期103-112,共10页
The effect of contact electrification on adhesion has been debated in recent years for gecko and bio-inspired dry adhesion material.To understand the fundamentals of this issue for Carbon Nanotube(CNT)dry adhesives,co... The effect of contact electrification on adhesion has been debated in recent years for gecko and bio-inspired dry adhesion material.To understand the fundamentals of this issue for Carbon Nanotube(CNT)dry adhesives,contact electrification and its relationship with adhesion are systematically studied using the first-principles calculation.Charge transfers from CNT or its special form,graphene,to the metal surface during the contact,and the transferred charge linearly correlates with the work function difference.Meanwhile,the adhesion energy is linearly related to the transferred charge for both CNT and graphene.More charge transfers from the flat graphene to metal surfaces than the curved CNT,leading to higher adhesion between graphene and metal surfaces.The curved structure of the CNT causes an irregular change of charge at the interface and hinders the charge transfer.Moreover,the curved structure induces electronic localization,which also decreases the interfacial charge transfer.The structure affects contact electrification,and hence adhesion is further demonstrated by the CNT with different deformation when contacting different surfaces.This study advances our understanding of contact electrification and its relationship with adhesion at the interface for bio-inspired carbon adhesive materials and sheds light on the control of them for engineering applications. 展开更多
关键词 Contact electrification ADHESION Bio-inspired adhesive CNT First-principles calculation Interfacial interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部