期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al_(2)O_(3)–ZrO_(2 )coated LiMn_(2)O_(4) electrode 被引量:4
1
作者 Guiling Luo Lin Zhu +6 位作者 Xiaowei Li Guolang Zhou Jing Sun Linlin Chen Yanhong Chao Lei Jiang Wenshuai Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期244-252,I0007,共10页
The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly env... The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly environment.Herein,an Al_(2)O_(3)–ZrO_(2) film coating of the LiMn_(2)O_(4)(AlZr–LMO) electrode is prepared and operated for recovery of Li^(+)from brine.The Li^(+) maximum extraction capacity of AlZr–LMO reached 49.92 mg/g in one cycle.Compared with the solely LMO electrode,the AlZr–LMO demonstrated evident electrochemical stability and cycle life towards the Li^(+)recovery system.After 30 successive cycles,the extraction capacity for Li^(+)increased from 29.21%to 57.67%.The high cycle capacity of the material could be attributed to its low polarization,high active sites,and good chemical stability of the electrode surface owing to the synergy function of Al_(2)O_(3)–ZrO_(2)in the charging-discharging process.A dynamic model parameter identification method was performed to evaluate the active site of AlZr–LMO.This work may provide a way to design the AlZr–LMO electrode and develop a good method for the recovery of lithium from brine. 展开更多
关键词 Al_(2)O_(3)-ZrO_(2)coated LiMn_(2)O_(4) LITHIUM Electrochemical extraction Cycling stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部