According to the ecological safety evaluation index data of land-use change in Ji'an City from 1999 to 2008,positive treatment on selected reverse indices is conducted by Reciprocal Method.Meanwhile,Index Method i...According to the ecological safety evaluation index data of land-use change in Ji'an City from 1999 to 2008,positive treatment on selected reverse indices is conducted by Reciprocal Method.Meanwhile,Index Method is used to standardize the selected indices,and Principal Component Analysis is applied by using year as a unit.FB is obtained,which is related with the ecological safety of land-use change from 1999 to 2008.According to the scientific,integrative,hierarchical,practical and dynamic principles,ecological safety evaluation index system of land-use change in Ji'an City is established.Principal Component Analysis and evaluation model are used to calculate four parameters,including the natural resources safety index of land use,the socio-economic safety indicators of land use,the eco-environmental safety index of land use,and the ecological safety degree of land use in Ji'an City.Result indicates that the ecological safety degree of land use in Ji'an City shows a slow upward trend as a whole.At the same time,ecological safety degree of land-use change is relatively low in Ji'an City with the safety value of 0.645,which is at a weak safety zone and needs further monitoring and maintenance.展开更多
The phase stability and site preference of the intermetallics LaFe13-xTx (T=Cr, Cu, Ga, Mn, Ni) with NaZn13-type structure have been investigated by lattice inversion potentials. The calculated results indicate that e...The phase stability and site preference of the intermetallics LaFe13-xTx (T=Cr, Cu, Ga, Mn, Ni) with NaZn13-type structure have been investigated by lattice inversion potentials. The calculated results indicate that each of the stabilizing elements Cr and Mn significantly decreases the cohesive energy of LaFe13-xTx and plays a role in stabilizing the 1:13 structure. The calculated lattice parameters of LaFe13-xTx (T=Al, Si) compounds are in good agreement with the experimental data. Qualitative analyses are carried out on the behavior of the Curie temperature and magnetocrystalline anisotropy. All the results indicate that the pair potentials based on the lattice inversion method can effectively give a deeper insight into the structure and property of complex materials.展开更多
基金Supported by Major Project of Chinese National Programs for Fundamental Research and Development Program(2009CB219401)Key Project of Natural Science Foundation of China(40534019)
文摘According to the ecological safety evaluation index data of land-use change in Ji'an City from 1999 to 2008,positive treatment on selected reverse indices is conducted by Reciprocal Method.Meanwhile,Index Method is used to standardize the selected indices,and Principal Component Analysis is applied by using year as a unit.FB is obtained,which is related with the ecological safety of land-use change from 1999 to 2008.According to the scientific,integrative,hierarchical,practical and dynamic principles,ecological safety evaluation index system of land-use change in Ji'an City is established.Principal Component Analysis and evaluation model are used to calculate four parameters,including the natural resources safety index of land use,the socio-economic safety indicators of land use,the eco-environmental safety index of land use,and the ecological safety degree of land use in Ji'an City.Result indicates that the ecological safety degree of land use in Ji'an City shows a slow upward trend as a whole.At the same time,ecological safety degree of land-use change is relatively low in Ji'an City with the safety value of 0.645,which is at a weak safety zone and needs further monitoring and maintenance.
文摘The phase stability and site preference of the intermetallics LaFe13-xTx (T=Cr, Cu, Ga, Mn, Ni) with NaZn13-type structure have been investigated by lattice inversion potentials. The calculated results indicate that each of the stabilizing elements Cr and Mn significantly decreases the cohesive energy of LaFe13-xTx and plays a role in stabilizing the 1:13 structure. The calculated lattice parameters of LaFe13-xTx (T=Al, Si) compounds are in good agreement with the experimental data. Qualitative analyses are carried out on the behavior of the Curie temperature and magnetocrystalline anisotropy. All the results indicate that the pair potentials based on the lattice inversion method can effectively give a deeper insight into the structure and property of complex materials.