期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Geological Characteristics and Ore-forming Time of the Dexing Porphyry Copper Ore Mine in Jiangxi Province 被引量:27
1
作者 GUO Shuo ZHAO Yuany +6 位作者 QU Huanchun WU Dexin XU Hong LI Chao LIU Yan ZHU Xiaoyun WANG Zengke 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期691-699,共9页
The Dexing porphyry copper ore mine is located in the Qin-Hang metallogenic belt between the Yangtze block and the Cathaysia block. It is a giant porphyry copper mine in China, including 3 ore districts: Tongchang, F... The Dexing porphyry copper ore mine is located in the Qin-Hang metallogenic belt between the Yangtze block and the Cathaysia block. It is a giant porphyry copper mine in China, including 3 ore districts: Tongchang, Fujiawu and Zhushahong. Our analyses of Re in molybdenite indicate that the ore-forming material of the copper ore deposits in Dexing should be mainly mantle-derived. Our study fills in a gap in the study of formation time of the Dexing copper mine, and further proves that the copper ore deposits in the three ore districts should be formed simultaneously, about 170 Ma, belonging to the early Yanshan period, and that the formation time of the copper ore deposits should be consistent with the formation time of granodiorite porphyry in which the copper ore deposits are hosted. Promising areas for seeking porphyry copper ore deposits is predicated to be the west or southwest of Dexing. 展开更多
关键词 Re-Os isotopic dating MOLYBDENITE porphyry copper deposit
下载PDF
Evolution of Goss texture in thin-walled copper tube at different heat treatment temperatures
2
作者 Song-wei WANG Hong-wu SONG +2 位作者 Yan CHEN Qi YU Shi-hong ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第4期1205-1216,共12页
The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation ... The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation textures of pre-drawn thin-walled copper tube are mainly composed of Copper and Y components,while with the increase of temperatures,the textures are transformed into a strong Goss texture gradually.The high-resolution microstructural characterizations indicate that the new Goss recrystallized grains nucleate and grow up within the deformed Copper grains and Y grains in different mechanisms,respectively.The tensile strength of the thin-walled copper tube decreases gradually with the increase of the temperature,while the elongation increases first and then decreases sharply due to the action of grain sizes and texture components. 展开更多
关键词 thin-walled copper tube recrystallization behavior Goss texture nucleation mechanism annealing twin
下载PDF
An effective approach for improving flotation recovery of molybdenite fines from a finely-disseminated molybdenum ore 被引量:2
3
作者 LIN Qing-quan GU Guo-hua +4 位作者 WANG Hui WANG Chong-qing LIU You-cai FU Jian-gang ZHU Ren-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1326-1339,共14页
An effective flotation approach is proposed for improving the recovery of molybdenite fines from a finely-disseminated molybdenum ore. To maximize the flotation recovery of molybdenum, process mineralogy of raw ore, c... An effective flotation approach is proposed for improving the recovery of molybdenite fines from a finely-disseminated molybdenum ore. To maximize the flotation recovery of molybdenum, process mineralogy of raw ore, contrast tests, optimization of operation conditions and particle size analysis were systematically investigated. Process mineralogy suggests that in the raw ore, 61.63% of molybdenite particles distribute in the 〈20 pm size fraction, and intergrow with muscovite and pyrite as the contained and disseminated type. Contrast tests indicate that conventional flotation responds to poor collection efficiency for particles less than 25 pm. Oil agglomerate flotation (OAF) process demonstrates an obvious superiority in improving the flotation recovery of molybdenite fines. Furthermore, the flotation results of OAF process reveal that the dosage of transformer oil plays a critical role on the average size of collected mineral particles (d(0), agglomerates (d^0) and the molybdenum recovery. In addition, industrial tests illustrate that compared with the Mo-S bulk flotation approach, OAF process not only increases Mo recovery and grade of molybdenum concentrate by 22.75% and 17.47% respectively, but also achieves a sulfur concentrate with a superior grade of 38.92%. 展开更多
关键词 molybdenite fines molybdenum ore particle size oil agglomerate flotation transformer oil froth flotation
下载PDF
Flotation mechanisms of molybdenite fines by neutral oils 被引量:3
4
作者 Qing-quan Lin Guo-hua Gu +3 位作者 Hui Wang You-cai Liu Jian-gang Fu Chong-qing Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期1-10,共10页
The flotation mechanisms of molybdenite fines by neutral oils were investigated through microflotation test, turbidity measure- ments, infrared spectroscopy, and interracial interaction calculations. The results of th... The flotation mechanisms of molybdenite fines by neutral oils were investigated through microflotation test, turbidity measure- ments, infrared spectroscopy, and interracial interaction calculations. The results of the flotation test show that at pH 2-11, the floatability of molybdenite fines in the presence of transformer oil is markedly better than that in the presence of kerosene and diesel oil. The addition of transformer oil, which enhances the floatability of molybdenite fines, promotes the aggregation of molybdenite particles. Fourier transform infrared measurements illustrate that physical interaction dominates the adsorption mechanism of neutral oil on molybdenite. Interracial inte- raction calculations indicate that hydrophobic attraction is the crucial force that acts among the oil collector, water, and molybdenite. Strong hydrophobic attraction between the oily collector and water provides the strong dispersion capability of the collector in water. Furthermore, the dispersion capability of the collector, not the interaction strength role in the flotation system of molybdenite fines. Our findings provide between the oily collectors and molybdenite, has a highly significant insights into the mechanism ofmolybdenite flotation. 展开更多
关键词 molybdenite fines FLOTATION MECHANISMS neutral oils interfacial interaction hydrophobic attraction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部