期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Spatial patterns of the Brusselator model with asymmetric Lévy diffusion
1
作者 Hongwei Yin Shangtao Yang +2 位作者 Xiaoqing Wen Haohua Wang Shufen Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期129-136,共8页
The formation of spatial patterns is an important issue in reaction–diffusion systems.Previous studies have mainly focused on the spatial patterns in reaction–diffusion models equipped with symmetric diffusion(such ... The formation of spatial patterns is an important issue in reaction–diffusion systems.Previous studies have mainly focused on the spatial patterns in reaction–diffusion models equipped with symmetric diffusion(such as normal or fractional Laplace diffusion),namely,assuming that spatial environments of the systems are homogeneous.However,the complexity and heterogeneity of spatial environments of biochemical reactions in vivo can lead to asymmetric diffusion of reactants.Naturally,there arises an open question of how the asymmetric diffusion affects dynamical behaviors of biochemical reaction systems.To answer this,we build a general asymmetric L´evy diffusion model based on the theory of a continuous time random walk.In addition,we investigate the two-species Brusselator model with asymmetric L´evy diffusion,and obtain a general condition for the formation of Turing and wave patterns.More interestingly,we find that even though the Brusselator model with symmetric diffusion cannot produce steady spatial patterns for some parameters,the asymmetry of L´evy diffusion for this model can produce wave patterns.This is different from the previous result that wave instability requires at least a three-species model.In addition,the asymmetry of L´evy diffusion can significantly affect the amplitude and frequency of the spatial patterns.Our results enrich our knowledge of the mechanisms of pattern formation. 展开更多
关键词 asymmetric Lévy diffusion Turing and wave patterns Brusselator model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部