In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) an...In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) analysis indicates that substitutional nitrogen atoms (-395.9 eV) with 1 atom% are effectively doped into TiO2 films. UV-VIS spectrometry shows that the in-situ nitrogen doping method indeed enhances the visible-activity of TiO2 films in the 425-550 nm range, and the results of the performance tests of the N-doped TiO2 films also imply that the photocatalysis activity is improved by in-situ doping. The in-situ doping mechanism of the N-doped TiO2 film is suggested according to the XPS results and the typical atomic layer deposition process.展开更多
A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system,...A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system, and UV–Vis spectrophotometer. XPS spectra of O 1s indicate that the content of surface hydroxyl groups is varied when using N2 as carrier gas. The results of water contact angles and optical reflection spectra show that the content variation of surface hydroxyl groups influences the wetting properties and optical reflectivity of TiO2 films. A surface reaction model is suggested to explain the ALD reaction process using N2 as carrier gas.展开更多
基金supported by the National Science and Technology Major Project of China(No.2009ZX02037-003)China Postdoctoral Science Foundation(No.2011M500996)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences
文摘In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) analysis indicates that substitutional nitrogen atoms (-395.9 eV) with 1 atom% are effectively doped into TiO2 films. UV-VIS spectrometry shows that the in-situ nitrogen doping method indeed enhances the visible-activity of TiO2 films in the 425-550 nm range, and the results of the performance tests of the N-doped TiO2 films also imply that the photocatalysis activity is improved by in-situ doping. The in-situ doping mechanism of the N-doped TiO2 film is suggested according to the XPS results and the typical atomic layer deposition process.
基金financially supported by the National Science and Technology Major Project (No. 2009ZX02037-003)the China Postdoctoral Science Foundation (No. 2011M500996)
文摘A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system, and UV–Vis spectrophotometer. XPS spectra of O 1s indicate that the content of surface hydroxyl groups is varied when using N2 as carrier gas. The results of water contact angles and optical reflection spectra show that the content variation of surface hydroxyl groups influences the wetting properties and optical reflectivity of TiO2 films. A surface reaction model is suggested to explain the ALD reaction process using N2 as carrier gas.