Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaw...Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb, suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.展开更多
基金Supported by NSFC project No. 40372066 and SRFDP No. 20030183042
文摘Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb, suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.