Based on the automatic monitoring data of ambient air in Jinan City from 2013 to 2020,the changing trend and characteristics of air quality in Jinan City during 2013-2020 were analyzed by using the fuzzy comprehensive...Based on the automatic monitoring data of ambient air in Jinan City from 2013 to 2020,the changing trend and characteristics of air quality in Jinan City during 2013-2020 were analyzed by using the fuzzy comprehensive evaluation,air quality index(AQI)and ambient air quality comprehensive index methods.The three methods are different in principle,purpose of use,and characterization methods,but the conclusions are consistent.The ambient air quality in Jinan City was improved significantly from 2013 to 2020.The prime pollutants were mainly PM_(2.5)and PM_(10),but the impact on air quality declined,and the impact of O_(3)on air quality increased.The complex pollution characteristics were obvious.Air pollution was the most severe in winter and lighter in summer.展开更多
Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter,for which the reason have not been...Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter,for which the reason have not been clearly elucidated.Here we measured carbonyl compounds and other trace gasses together with PM_(2.5)over urban Jinan in North China Plain during the winter.Markedly higher carbonyl concentrations(average:14.63±4.21 ppbv)were found during wintertime haze pollution,about one to three-times relative to those on nonhaze days,with slight difference in chemical composition except formaldehyde(HCHO).HCHO(3.68 ppbv),acetone(3.17 ppbv),and acetaldehyde(CH_3CHO)(2.83 ppbv)were the three most abundant species,accounting for~75% of the total carbonylson both haze and non-haze days.Results from observational-based model(OBM)with atmospheric oxidation capacity(AOC)indicated that AOC significantly increased with the increasing carbonyls during the winter haze events.Carbonyl photolysis have supplied key oxidants such as RO_(2) and HO_(2),and thereby enhancing the formation of fine particles and secondary organic aerosols,elucidating the observed haze-carbonyls inter-correlation.Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources.1-butene was further confirmed to be the major precursor for HCHO.This study confirms the great contribution of carbonyls to AOC,and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.展开更多
Secondary organic aerosols(SOAs) are an important component of particulates, but whether biogenic SOAs(BSOAs) or anthropogenic SOAs(ASOAs) are the dominant contributors to haze pollution remains poorly characterized. ...Secondary organic aerosols(SOAs) are an important component of particulates, but whether biogenic SOAs(BSOAs) or anthropogenic SOAs(ASOAs) are the dominant contributors to haze pollution remains poorly characterized. In this study, particulate samples were collected from September 2014 to August 2015 at an urban site in Jinan, which is the capital of Shandong Province and a typical city in the North China Plain. The PM2.5 samples were analyzed for BSOA(isoprene(SOAI) and monoterpenes(SOAM)) and ASOA(aromatic(SOAA)) tracers. The concentrations of the SOAAtracer(1.1 ± 1.0 ng/m3) were lowest, and those of SOAItracers(41.8 ± 86.2 ng/m3) were highest, with the concentrations of SOAMtracers(19.4 ± 9.9 ng/m3) being intermediate. The SOAItracers were more abundant in the summer and less abundant in the winter. Both SOAIand SOAMincreased with increasing ozone level but decreased with increasing NOx level. Correlation analysis revealed a good correlation between 2,3-dihydroxy-4-oxopentanoic acid and levoglucosan levels in three seasons. These results suggested that biomass burning activities occurring in the NCP can enhance the emissions of aromatics and should be controlled, especially in the autumn and winter. SOA tracers were classified according to pollution degree, and the results showed that as pollution increases, the contributions of SOAAincrease. These results indicate that reducing anthropogenic emissions is necessary to prevent SOA pollution, especially during heavy pollution episodes.展开更多
文摘Based on the automatic monitoring data of ambient air in Jinan City from 2013 to 2020,the changing trend and characteristics of air quality in Jinan City during 2013-2020 were analyzed by using the fuzzy comprehensive evaluation,air quality index(AQI)and ambient air quality comprehensive index methods.The three methods are different in principle,purpose of use,and characterization methods,but the conclusions are consistent.The ambient air quality in Jinan City was improved significantly from 2013 to 2020.The prime pollutants were mainly PM_(2.5)and PM_(10),but the impact on air quality declined,and the impact of O_(3)on air quality increased.The complex pollution characteristics were obvious.Air pollution was the most severe in winter and lighter in summer.
基金supported by the National Natural Science Foundation of China(Nos.42005092,42275127,42075112and 41775127)the Natural Science Foundation of Shandong Province(No.ZR2020QD058)。
文摘Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter,for which the reason have not been clearly elucidated.Here we measured carbonyl compounds and other trace gasses together with PM_(2.5)over urban Jinan in North China Plain during the winter.Markedly higher carbonyl concentrations(average:14.63±4.21 ppbv)were found during wintertime haze pollution,about one to three-times relative to those on nonhaze days,with slight difference in chemical composition except formaldehyde(HCHO).HCHO(3.68 ppbv),acetone(3.17 ppbv),and acetaldehyde(CH_3CHO)(2.83 ppbv)were the three most abundant species,accounting for~75% of the total carbonylson both haze and non-haze days.Results from observational-based model(OBM)with atmospheric oxidation capacity(AOC)indicated that AOC significantly increased with the increasing carbonyls during the winter haze events.Carbonyl photolysis have supplied key oxidants such as RO_(2) and HO_(2),and thereby enhancing the formation of fine particles and secondary organic aerosols,elucidating the observed haze-carbonyls inter-correlation.Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources.1-butene was further confirmed to be the major precursor for HCHO.This study confirms the great contribution of carbonyls to AOC,and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.
基金supported by the National Key R&D Program of China (No. 2017YFC0210000)the Beijing Municipal Science and Technology Project (No. ZL171100000617002)+2 种基金the Scientific Research Project of the Beijing Education Commission (No. KM201510028007)LAC/CMA (2017A01)the National Natural Science Foundation of China (Nos.41471306, 41505133, 41705113, 41877312)
文摘Secondary organic aerosols(SOAs) are an important component of particulates, but whether biogenic SOAs(BSOAs) or anthropogenic SOAs(ASOAs) are the dominant contributors to haze pollution remains poorly characterized. In this study, particulate samples were collected from September 2014 to August 2015 at an urban site in Jinan, which is the capital of Shandong Province and a typical city in the North China Plain. The PM2.5 samples were analyzed for BSOA(isoprene(SOAI) and monoterpenes(SOAM)) and ASOA(aromatic(SOAA)) tracers. The concentrations of the SOAAtracer(1.1 ± 1.0 ng/m3) were lowest, and those of SOAItracers(41.8 ± 86.2 ng/m3) were highest, with the concentrations of SOAMtracers(19.4 ± 9.9 ng/m3) being intermediate. The SOAItracers were more abundant in the summer and less abundant in the winter. Both SOAIand SOAMincreased with increasing ozone level but decreased with increasing NOx level. Correlation analysis revealed a good correlation between 2,3-dihydroxy-4-oxopentanoic acid and levoglucosan levels in three seasons. These results suggested that biomass burning activities occurring in the NCP can enhance the emissions of aromatics and should be controlled, especially in the autumn and winter. SOA tracers were classified according to pollution degree, and the results showed that as pollution increases, the contributions of SOAAincrease. These results indicate that reducing anthropogenic emissions is necessary to prevent SOA pollution, especially during heavy pollution episodes.