期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Axonal regeneration from the spinal cord to peripheral nerve induced by end-to-side neurorrhaphy Evidence from acetylcholinesterase staining and Fluorogold retrograde tracing
1
作者 Xuecheng Cao Lijun Ling +2 位作者 Noriyuki OsakiO Yasuo SugiuraO Ryogo NakamuraO 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第11期853-856,共4页
BACKGROUND: In recent years, surgeons have advocated root or trunk repair of avulsed nerve roots for overall recovery. However, donor nerves pose a major problem, because they do not contain adequate numbers of axons... BACKGROUND: In recent years, surgeons have advocated root or trunk repair of avulsed nerve roots for overall recovery. However, donor nerves pose a major problem, because they do not contain adequate numbers of axons. Moreover, the procedures lead to nerve deficits in the donor nerve following transplantation. OBJECTIVE: To observe whether axonal regeneration occurs by end-to-side neurorrhaphy in the peripheral nerve and spinal cord. DESIGN, TIME AND SETTING: A neuroanatomical, randomized, controlled, animal study was performed at Functional Anatomy Lab in Nagoya University School of Medicine from May 2002 to July 2003. MATERIALS: Fluorogold was purchased from Fluorochrome, LLC, USA. BX50 light microscope and fluorescent microscope were purchased from Olympus, Japan. METHODS: A total of 21 rats were randomly divided into three groups, and the posterior avulsion injury model (C6-8) of the brachial plexus was performed. In the ventral root graft group, the avulsed C7 ventral roots were reanastomosed to the small anterior lateral aspect window of the spinal cord via nerve grafts. In the dorsal root graft group, the C7 dorsal roots were reanastomosed at the small pia mater window of the posterior lateral aspect of the spinal cord via nerve grafts. In the control group, the avulsed nerve roots were not repaired. MAIN OUTCOME MEASURES: The nerve grafts were collected from the ventral and dorsal root graft groups, and the C7 proximal nerve end was collected from the control group. Acetylcholinesterase staining was performed on the tissue. Fluorogold retrograde tracing technique was applied to determine the origin of the regenerating axons. RESULTS: Results showed that acetylcholine-positive axons existed in nerve grafts of the ventral and dorsal root graft groups. However, axons were not found in the avulsed nerve roots of the control group. Fluorogold retrograde tracing confirmed the presence of fluorogold-containing neurons in the ventral and dorsal horn of the ventral and dorsal root graft groups. Fluorogold-positive neurons were not observed in the control group. CONCLUSION: End-to-side neurorrhaphy induced axonal regeneration from the spinal cord to the peripheral nervous system. 展开更多
关键词 neural regeneration spinal cord brachial plexus injury peripheral nerve end-to-side neurorrhaphy
下载PDF
Recent progress in injectable bone repair materials research 被引量:1
2
作者 Zonggang CHEN Xiuli ZHANG +4 位作者 Lingzhi KANG Fei XU Zhaoling WANC Fu-Zhai CUI Zhongwu GUO 《Frontiers of Materials Science》 SCIE CSCD 2015年第4期332-345,共14页
Minimally invasive injectable self-setting materials are useful for bone repairs and for bone tissue regeneration in situ. Due to the potential advantages of these materials, such as causing minimal tissue injury, nea... Minimally invasive injectable self-setting materials are useful for bone repairs and for bone tissue regeneration in situ. Due to the potential advantages of these materials, such as causing minimal tissue injury, nearly no influence on blood supply, easy operation and negligible postoperative pain, they have shown great promises and successes in clinical applications. It has been proposed that an ideal injectable bone repair material should have features similar to that of natural bones, in terms of both the microstructure and the composition, so that it not only provides adequate stimulus to facilitate cell adhesion, proliferation and differentiation but also offers a satisfactory biological environment for new bone to grow at the implantation site. This article reviews the properties and applications of injectable bone repair materials, including those that are based on natural and synthetic polymers, calcium phosphate, calcium phosphate/ polymer composites and calcium sulfate, to orthopedics and bone tissue repairs, as well as the progress made in biomimetic fabrication of injectable bone repair materials. 展开更多
关键词 bone repair material POLYMER calcium phosphate calcium sulfate BIOMIMETIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部