The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be...The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be about 8.Designing and implementing such focusing optics for short-pulse(<100 fs)systems paves the way for their use in future high-power facilities,where they can be used to achieve intensities beyond 1023W/cm^(2).A retro-imaging-based target alignment system is also described,which is used to align solid targets at the output of the ellispoidal mirrors(with a numerical aperture of 0.75 in this case).展开更多
Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-...Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow.展开更多
基金The results of Project LQ1606 were obtained with the financial support of the Ministry of Education,Youths and Sports as part of targeted support from the National Programme of Sustainability II.This research was also sponsored by the Czech Science Foundation(Project No.18-09560S)by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15_003/0000449)from the European Regional Development Fund(HIFI),by the project on Advanced Research Using High Intensity Laser Produced Photons and Particles(No.CZ.02.1.01/0.0/0.0/16019/0000789)from the European Regional Development Fund(ADONIS)+1 种基金by theMinistry of Education and Science of the Russian Federation under Contract No.14.Z50.31.0007.The work was also supported by the Ministry of Education and Science of the Russian Federation(FTP Grant#14.607.21.0196,Project ID:RFMEFI60717X0196)The work of JIHT RAS team on X-ray measurements and analysis was done with financial support fromthe Russian Science Foundation(Grant#14-50-00124).
文摘The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be about 8.Designing and implementing such focusing optics for short-pulse(<100 fs)systems paves the way for their use in future high-power facilities,where they can be used to achieve intensities beyond 1023W/cm^(2).A retro-imaging-based target alignment system is also described,which is used to align solid targets at the output of the ellispoidal mirrors(with a numerical aperture of 0.75 in this case).
文摘Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow.