Bone,cartilage,and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types,whose activity and interplay must be precisely mediated for effective healing post-injury.Although ext...Bone,cartilage,and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types,whose activity and interplay must be precisely mediated for effective healing post-injury.Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone,cartilage,and soft tissue regeneration,effective clinical translation of these mechanisms remains a challenge.Regulation of the immune microenvironment is increasingly becoming a favorable target for bone,cartilage,and soft tissue regeneration;therefore,an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable.Herein,we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone,cartilage,and soft tissue repair and regeneration.We discuss the roles of various immune cell subsets in bone,cartilage,and soft tissue repair and regeneration processes and introduce novel strategies,for example,biomaterial-targeting of immune cell activity,aimed at regulating healing.Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone,cartilage,and soft tissue regeneration through regulation of the immune microenvironment.展开更多
The key to high-level encryption and anti-counterfeiting techniques is the storage of multiple levels of distinct information that can be individually and precisely addressed by certain stimuli.This continues to be a ...The key to high-level encryption and anti-counterfeiting techniques is the storage of multiple levels of distinct information that can be individually and precisely addressed by certain stimuli.This continues to be a formidable challenge as the concealed images or codes must be read with fast response and high resolution without cross-talk to the first layer of information.Here,we report a non-fluorescencebased strategy to establish responsive encryption labels taking advantage of solely tuning multiple optical patterns of cholesteric liquid crystal(CLC)microdroplets doped with light-driven molecular motors.The photo-triggered unidirectional rotation of the motor induced not only changes in the helical twist power value but the opposite helical orientation of the superstructure in CLCs as well,resulting in changes in both the structural color and the selective reflection of circularly polar light.The designed labels,which featured highly selective addressability of dual-level distinct information,good reversibility,and viewing angle-independence,were applied to build devices for daily practical use,demonstrating great potential in anti-counterfeiting technology and provide a versatile platform for enhanced data protection and encryption of authentic information.展开更多
The sensitive and differential detection of Gram-negative bacteria is essential in food processing,environmental monitoring,and the daily chemical industry.Herein,we propose and validate a liquid crystal(LC)-based apt...The sensitive and differential detection of Gram-negative bacteria is essential in food processing,environmental monitoring,and the daily chemical industry.Herein,we propose and validate a liquid crystal(LC)-based aptasensor for the ultrasensitive detection of Escherichia coli(E.coli),a model of Gram-negative bacteria.The nematic liquid crystal of 4-cyano-4’-pentylbiphenyl(5 CB) molecules can be orderly or disorderly arranged at the LC-aqueous interface via different stimuli,causing changes in optical texture due to birefringence.Bright schlieren texture is observed when a mixture solution of aptamer and hexadecyl trimethyl ammonium bromide(CTAB) is dripped onto the segmented LC films on a copper mesh.The specific binding of aptamers with target bacteria biomarkers liberates the CTAB molecules,which then self-assemble at the LC-aqueous interface to induce the vertical alignment of LCs.An optical transition from bright to dark is therefore achieved via the LC molecular orientation and serves as an aptasensor.Given the prominent affinity and specificity of the aptamer,the established sensitive and selective E.coli assay shows an ultralow detection limit of 27 cfu/mL.The prepared aptasensor can also be applied for the sensitive and selective determination of E.coli in fruit juice,soft drink,and cosmetic products,and shows great promise for the on-site detection of Gram-negative bacteria with high sensitivity and specificity for environmental monitoring,food safety assessment,and household chemical inspection.展开更多
Reflective displays have stimulated considerable interest because of their friendly readability and low energy consumption.Herein,we develop a reflective display technique via an electro-microfluidic assembly of parti...Reflective displays have stimulated considerable interest because of their friendly readability and low energy consumption.Herein,we develop a reflective display technique via an electro-microfluidic assembly of particles(eMAP)strategy whereby colored particles assemble into annular and planar structures inside a dyed water droplet to create"open"and"closed"states of a display pixel.Water-in-oil droplets are compressed within microwells to form a pixel array.The particles dispersed in droplets are driven by deformation-strengthened dielectrophoretic force to achieve fast and reversible motion and assemble into multiple structures.This eMAP based device can display designed information in three primary colors with≥170°viewing angle,~0.14 s switching time,and bistability with an optimized material system.This proposed technique demonstrates the basis of a high-performance and energy-saving reflective display,and the display speed and color quality could be further improved by structure and material optimization;exhibiting a potential reflective display technology.展开更多
Liquid crystal(LC)photonic devices have attracted intensive attention in recent decades,due to the merits of tunability,cost-effectiveness,and high efficiency.However,the precise and efficient simulation of large-scal...Liquid crystal(LC)photonic devices have attracted intensive attention in recent decades,due to the merits of tunability,cost-effectiveness,and high efficiency.However,the precise and efficient simulation of large-scale three-dimensional electrically stimulated LC photonic devices remains challenging and resource consuming.Here we report a straightforward nonuniform finite difference method(NFDM)for efficiently simulating largescale LC photonic devices by employing a spatially nonuniform mesh grid.展开更多
基金supported by the National Natural Science Foundation of China(82002313,82072444,31900963)the Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration(2020kqhm008,2021kqhm002)+2 种基金the Health Commission of Hubei Province(WJ2019Z009)the Wuhan Union Hospital“Pharmaceutical Technology Nursing”special fund(2019xhyn021),the China Postdoctoral Science Foundation(2021TQ0118)the Gillian Reny Stepping Strong Center for Trauma Innovation Research Scholars Fund(110768).
文摘Bone,cartilage,and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types,whose activity and interplay must be precisely mediated for effective healing post-injury.Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone,cartilage,and soft tissue regeneration,effective clinical translation of these mechanisms remains a challenge.Regulation of the immune microenvironment is increasingly becoming a favorable target for bone,cartilage,and soft tissue regeneration;therefore,an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable.Herein,we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone,cartilage,and soft tissue repair and regeneration.We discuss the roles of various immune cell subsets in bone,cartilage,and soft tissue repair and regeneration processes and introduce novel strategies,for example,biomaterial-targeting of immune cell activity,aimed at regulating healing.Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone,cartilage,and soft tissue regeneration through regulation of the immune microenvironment.
基金supported financially by the National Key R&D Program of China(grant no.2020YFE0100200)Science and Technology Projects in Guangzhou(grant no.202201000008)+2 种基金Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(grant no.2017B030301007)the Netherlands Ministry of Education,Culture and Science(Gravitation Program 024.001.035 to B.L.F.)S.X.acknowledges the fellowship of China Postdoctoral Science Foundation(grant no.2022M711224).
文摘The key to high-level encryption and anti-counterfeiting techniques is the storage of multiple levels of distinct information that can be individually and precisely addressed by certain stimuli.This continues to be a formidable challenge as the concealed images or codes must be read with fast response and high resolution without cross-talk to the first layer of information.Here,we report a non-fluorescencebased strategy to establish responsive encryption labels taking advantage of solely tuning multiple optical patterns of cholesteric liquid crystal(CLC)microdroplets doped with light-driven molecular motors.The photo-triggered unidirectional rotation of the motor induced not only changes in the helical twist power value but the opposite helical orientation of the superstructure in CLCs as well,resulting in changes in both the structural color and the selective reflection of circularly polar light.The designed labels,which featured highly selective addressability of dual-level distinct information,good reversibility,and viewing angle-independence,were applied to build devices for daily practical use,demonstrating great potential in anti-counterfeiting technology and provide a versatile platform for enhanced data protection and encryption of authentic information.
基金supported by Guangdong Province Basic and Applied Basic Research Foundation (2021A1515110236)the National Natural Science Foundation of China (62004070)+4 种基金the Science and Technology Program of Guangzhou (2019050001,202201010248)the Youth Innovation Project of Guangdong Education Department(2020KQNCX018)the Young Scholar Foundation of South China Normal University (21KJ08)the “Climbing Program” Special Funds of Guangdong Province (pdjh2022b0133)partially supported by the Science and Technology Planning Project of Guangdong Province (2020B1212060067)
文摘The sensitive and differential detection of Gram-negative bacteria is essential in food processing,environmental monitoring,and the daily chemical industry.Herein,we propose and validate a liquid crystal(LC)-based aptasensor for the ultrasensitive detection of Escherichia coli(E.coli),a model of Gram-negative bacteria.The nematic liquid crystal of 4-cyano-4’-pentylbiphenyl(5 CB) molecules can be orderly or disorderly arranged at the LC-aqueous interface via different stimuli,causing changes in optical texture due to birefringence.Bright schlieren texture is observed when a mixture solution of aptamer and hexadecyl trimethyl ammonium bromide(CTAB) is dripped onto the segmented LC films on a copper mesh.The specific binding of aptamers with target bacteria biomarkers liberates the CTAB molecules,which then self-assemble at the LC-aqueous interface to induce the vertical alignment of LCs.An optical transition from bright to dark is therefore achieved via the LC molecular orientation and serves as an aptasensor.Given the prominent affinity and specificity of the aptamer,the established sensitive and selective E.coli assay shows an ultralow detection limit of 27 cfu/mL.The prepared aptasensor can also be applied for the sensitive and selective determination of E.coli in fruit juice,soft drink,and cosmetic products,and shows great promise for the on-site detection of Gram-negative bacteria with high sensitivity and specificity for environmental monitoring,food safety assessment,and household chemical inspection.
基金support from the Key Project of the National Natural Science Foundation of China(No.12131010)the Special Project for Marine Economy Development of Guangdong Province(GDNRC[2023]26)+1 种基金the International Cooperation Base of Infrared Reflection Liquid Crystal Polymers and Device(2015B050501010)P.M.acknowledges support under ARC Grant CE170100026.
文摘Reflective displays have stimulated considerable interest because of their friendly readability and low energy consumption.Herein,we develop a reflective display technique via an electro-microfluidic assembly of particles(eMAP)strategy whereby colored particles assemble into annular and planar structures inside a dyed water droplet to create"open"and"closed"states of a display pixel.Water-in-oil droplets are compressed within microwells to form a pixel array.The particles dispersed in droplets are driven by deformation-strengthened dielectrophoretic force to achieve fast and reversible motion and assemble into multiple structures.This eMAP based device can display designed information in three primary colors with≥170°viewing angle,~0.14 s switching time,and bistability with an optimized material system.This proposed technique demonstrates the basis of a high-performance and energy-saving reflective display,and the display speed and color quality could be further improved by structure and material optimization;exhibiting a potential reflective display technology.
基金National Natural Science Foundation of China(61805087)Science and Technology Program of Guangzhou(2019050001,202102020604,202201010351)+2 种基金Natural Science Foundation of Guangdong Province(2018A030313368)Special Program on Key Fields for Colleges and Universities of Guangdong Province(2021ZDZX1048)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(2023B1212060065)。
文摘Liquid crystal(LC)photonic devices have attracted intensive attention in recent decades,due to the merits of tunability,cost-effectiveness,and high efficiency.However,the precise and efficient simulation of large-scale three-dimensional electrically stimulated LC photonic devices remains challenging and resource consuming.Here we report a straightforward nonuniform finite difference method(NFDM)for efficiently simulating largescale LC photonic devices by employing a spatially nonuniform mesh grid.