Video analytics is an integral part of surveillance cameras. Comparedto video analytics, audio analytics offers several benefits, includingless expensive equipment and upkeep expenses. Additionally, the volume ofthe a...Video analytics is an integral part of surveillance cameras. Comparedto video analytics, audio analytics offers several benefits, includingless expensive equipment and upkeep expenses. Additionally, the volume ofthe audio datastream is substantially lower than the video camera datastream,especially concerning real-time operating systems, which makes it lessdemanding of the data channel’s bandwidth needs. For instance, automaticlive video streaming from the site of an explosion and gunshot to the policeconsole using audio analytics technologies would be exceedingly helpful forurban surveillance. Technologies for audio analytics may also be used toanalyze video recordings and identify occurrences. This research proposeda deep learning model based on the combination of convolutional neuralnetwork (CNN) and recurrent neural network (RNN) known as the CNNRNNapproach. The proposed model focused on automatically identifyingpulse sounds that indicate critical situations in audio sources. The algorithm’saccuracy ranged from 95% to 81% when classifying noises from incidents,including gunshots, explosions, shattered glass, sirens, cries, and dog barking.The proposed approach can be applied to provide security for citizens in openand closed locations, like stadiums, underground areas, shopping malls, andother places.展开更多
This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective o...This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations.展开更多
基金funded by the project,“Design and implementation of real-time safety ensuring system in the indoor environment by applying machine learning techniques”.IRN:AP14971555.
文摘Video analytics is an integral part of surveillance cameras. Comparedto video analytics, audio analytics offers several benefits, includingless expensive equipment and upkeep expenses. Additionally, the volume ofthe audio datastream is substantially lower than the video camera datastream,especially concerning real-time operating systems, which makes it lessdemanding of the data channel’s bandwidth needs. For instance, automaticlive video streaming from the site of an explosion and gunshot to the policeconsole using audio analytics technologies would be exceedingly helpful forurban surveillance. Technologies for audio analytics may also be used toanalyze video recordings and identify occurrences. This research proposeda deep learning model based on the combination of convolutional neuralnetwork (CNN) and recurrent neural network (RNN) known as the CNNRNNapproach. The proposed model focused on automatically identifyingpulse sounds that indicate critical situations in audio sources. The algorithm’saccuracy ranged from 95% to 81% when classifying noises from incidents,including gunshots, explosions, shattered glass, sirens, cries, and dog barking.The proposed approach can be applied to provide security for citizens in openand closed locations, like stadiums, underground areas, shopping malls, andother places.
文摘This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations.