Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t...In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.展开更多
Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru ...Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru NiO_(x)electrode fabricated via a modified dip coating method exhibited excellent OER performance in acidic media,and neutral media for CO_(2)reduction reaction.We combined in-situ/operando X-ray absorption near-edge structure and on-line inductively coupled plasma mass spectrometry studies to unveil the role of the Ni introduced in the Ru oxide.We propose that the Ni not only transforms the electronic structure of the Ru oxide,but also produces a large number of oxygen vacancies by distorting the oxygen lattice structure at low overpotentials,increasing the participation of lattice oxygen for OER.This work demonstrates the real behavior of bimetallic oxide materials under applied potentials and provides new insights into the development of efficient electrocatalysts.展开更多
The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window.However,the ionic conductivity a...The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window.However,the ionic conductivity and mechanical strength of the Na-ion conducting polymeric gel electrolytes are limited by below 20 mS cm−1 and 2.2 MPa.Herein,we demonstrate Na-ion conducting and flexible polymeric hydrogel electrolytes of the chemically coupled poly(diallyldimethylammonium chloride)-dextrin-N,N′-methylene-bisacrylamide film immersed in NaClO_(4) solution(ex-DDA-Dex+NaClO_(4))for flexible sodium-ion hybrid capacitors(f-NIHC).In particular,the anion exchange reaction and synergistic interaction of ex-DDA-Dex with the optimum ClO_(4)−enable to greatly improve the ionic conductivity up to 27.63 mS cm−1 at 25◦C and electrochemical stability window up to 2.6 V,whereas the double networking structure leads to achieve both the mechanical strength(7.48 MPa)and softness of hydrogel electrolytes.Therefore,the f-NIHCs with the ex-DDA-Dex+NaClO_(4) achieved high specific and high-rate capacities of 192.04 F g^(−1)at 500 mA g^(−1)and 116.06 F g^(−1)at 10000 mA g^(−1),respectively,delivering a large energy density of 120.03Wh kg^(−1)at 906Wkg^(−1)and long cyclability of 70%over 500 cycles as well as demonstrating functional operation under mechanical stresses.展开更多
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2022R1C1C1011058)。
文摘In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.
基金supported by institutional program grants from the Korea Institute of Science and Technology and Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20224C10300020)“Carbon to X Project”(2020M3H7A1098229)through the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea+1 种基金supported by the National Research Council of Science&Technology(NST)grant by the Korean government(MSIT)(No.CAP21011-100)National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C2093467)。
文摘Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru NiO_(x)electrode fabricated via a modified dip coating method exhibited excellent OER performance in acidic media,and neutral media for CO_(2)reduction reaction.We combined in-situ/operando X-ray absorption near-edge structure and on-line inductively coupled plasma mass spectrometry studies to unveil the role of the Ni introduced in the Ru oxide.We propose that the Ni not only transforms the electronic structure of the Ru oxide,but also produces a large number of oxygen vacancies by distorting the oxygen lattice structure at low overpotentials,increasing the participation of lattice oxygen for OER.This work demonstrates the real behavior of bimetallic oxide materials under applied potentials and provides new insights into the development of efficient electrocatalysts.
基金National Research Foundation,Grant/Award Number:NRF-2020R1A3B2079803Korea Institute for Advancement of Technology,Grant/Award Number:P0026069。
文摘The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window.However,the ionic conductivity and mechanical strength of the Na-ion conducting polymeric gel electrolytes are limited by below 20 mS cm−1 and 2.2 MPa.Herein,we demonstrate Na-ion conducting and flexible polymeric hydrogel electrolytes of the chemically coupled poly(diallyldimethylammonium chloride)-dextrin-N,N′-methylene-bisacrylamide film immersed in NaClO_(4) solution(ex-DDA-Dex+NaClO_(4))for flexible sodium-ion hybrid capacitors(f-NIHC).In particular,the anion exchange reaction and synergistic interaction of ex-DDA-Dex with the optimum ClO_(4)−enable to greatly improve the ionic conductivity up to 27.63 mS cm−1 at 25◦C and electrochemical stability window up to 2.6 V,whereas the double networking structure leads to achieve both the mechanical strength(7.48 MPa)and softness of hydrogel electrolytes.Therefore,the f-NIHCs with the ex-DDA-Dex+NaClO_(4) achieved high specific and high-rate capacities of 192.04 F g^(−1)at 500 mA g^(−1)and 116.06 F g^(−1)at 10000 mA g^(−1),respectively,delivering a large energy density of 120.03Wh kg^(−1)at 906Wkg^(−1)and long cyclability of 70%over 500 cycles as well as demonstrating functional operation under mechanical stresses.