Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Ge...Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Generalized Pareto Distribution. The results show that a winter climate catastrophe in southern China occurred around i99I, and the intensity of winter extreme precipitation was strengthened after climate wanning. The anomalous circulation characteristics before and after the climate wanning was further analyzed by using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. It is found that the tropical winter monsoon over East Asia is negatively correlated with the precipitation in southeastern China. After climate warming the meridionality of the circulations in middle and high latitudes increases, which is favorable for the southward movement of the cold air from the north. In addition, the increase of the temperature over southern China may lead to the decrease of the differential heating between the continent and the ocean. Consequently, the tropical winter monsoon over East Asia is weakened, which is favorable for the transport of the warm and humid air to southeastem China and the formation of the anomalous convergence of the moisture flux, resulting in large precipitation over southeastern China. As a result, the interaction between the anomalous circulations in the middle and high latitudes and lower latitudes after the climate warming plays a major role in the increase of the winter precipitation intensity over southeastem China.展开更多
Using NCEP/NCAR daily reanalysis data and SCSMEX data, an investigation is carried out of the relationship between the position variation of the west Pacific subtropical high (WPSH) and the apparcnt heating in June ...Using NCEP/NCAR daily reanalysis data and SCSMEX data, an investigation is carried out of the relationship between the position variation of the west Pacific subtropical high (WPSH) and the apparcnt heating in June 1998 based on the complete vertical vorticlty equation. It is tbund that the non-adiabatic heating plays an important role in the position variation of WPSH. In comparison with climatic mean status, the vertical change of non-adiabatic heating is stronger in the north side of WPSH in June 1998, but weaker in the south side of WPSH. The anomalous non-uniform heating induces anomalous cyclonic vorticity in South China, areas to lhe south of the Yangtze and its mid-lower valleys, but anomalous anticyclonic vorticity in the Indo-China Peninsula and South China Sea areas lead to the more southward position of WPSH than the mean.展开更多
The vertical distribution of aerosols in the troposphere is important for determining their effects on cli- mate. The vertical distribution of aerosols under different atmospheric conditions in the free troposphere wa...The vertical distribution of aerosols in the troposphere is important for determining their effects on cli- mate. The vertical distribution of aerosols under different atmospheric conditions in the free troposphere was di- rectly observed using a surface micro-pulse LIDAR (MPL) and a TP/WVP-3000 microwave radiometer at the Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL, 35.95~N, 104.10~E) in the western Loess Plateau, China, in the spring of 2008. The results showed two possible transportation paths of a sandstorm from May 1 to May 4 in 2008. In one path, sand-dust aerosols were transported toward the east from the Taklimakan Desert to the Badain Jaran Desert and the Tengger Desert by a westerly wind and then toward the southeast to Jingtai and Lanzhou. A weak aerosol index (AI) indicated another possible transport path toward the east from the Taklimakan Desert to the Qaidam Basin and through the Tibetan Plateau eastward to SACOL. The aerosol profile of sandstorm processes over the SACOL area displayed three patterns: a single peak distribution under stable at- mospheric conditions, indicating urban aerosol distribution; an exponential decrease under unstable atmospheric conditions in the presence of a sandstorm; and a slight change in the mixed layer during the first and last stages of the sandstorm, indicative of thorough mixing during lifting and deposition stages. Analyses of the aerosol layer height (ALH) showed that there are two types of ALH diurnal variation. The ALH during the first sandstorm stage was complex and disordered, and affected by atmospheric circulation. While the ALH had obvious diurnal variation in the other stage, the ALH and aerosol extinction coefficient (AEC) had a single peak, and was higher in the af- ternoon and lower in the morning. In the second case the ALH was in agreement with the atmospheric boundary layer height (BLH) variation. As a result of the development of the atmospheric boundary layer (ABL) during day and maintenance at night, ALH during sandstorm-free days showed obvious diurnal variations. Multiple vertical distribu- tion patterns of sand-dust aerosols will result in different climate effects; therefore, the vertical distribution patterns can be used to parameterize climate and aerosol models.展开更多
The NCEP/NCAR reanalysis data are used to investigate the role of cold air and moisture characteristics during the evolution of two cases of tropical cyclones (Nanmadol and Irma) which made landfall on China in winter...The NCEP/NCAR reanalysis data are used to investigate the role of cold air and moisture characteristics during the evolution of two cases of tropical cyclones (Nanmadol and Irma) which made landfall on China in wintertime. The results are shown as follows. (1) The East Asia trough steered the cold air into the tropical ocean in early winter. The tropical cyclones moved in opposite directions with a high moving out to sea and the enhancement of the pressure gradient at the periphery played a role in maintaining and strengthening the intensity of the storms. The intrusion of weak cold air into the low levels of the tropical cyclones strengthened them by improving the cyclonic disturbance when they were still over the warm sea surface. When the cold air was strong enough and intruded into the eyes, the warm cores were damaged and stuffed before dissipation. (2) The tropical cyclones were formed in a convergence zone of moisture flux and their development could enhance the disturbance of water vapor convergence, thus strengthening the moisture convergence zone. However, when they were outside the moisture zone, the storms could not gain sufficient water vapor and became weak. There were no belts of strong moisture transportation during the wintertime tropical cyclone processes.展开更多
A control integration with the normal solar constant and one with it increased by 2.5% in the National Center for Atmospheric Research (NCAR) coupled atmosphere-ocean Climate System Model were conducted to see how w...A control integration with the normal solar constant and one with it increased by 2.5% in the National Center for Atmospheric Research (NCAR) coupled atmosphere-ocean Climate System Model were conducted to see how well the actual realized global warming could be predicted just by analysis of the control results. This is a test, within a model context, of proposals that have been advanced to use knowledge of the present day climate to make "empirical" estimates of global climate sensitivity. The scaling of the top-of-the-atmosphere infrared flux and the planetary albedo as functions of surface temperature was inferred by examining four different temporal and geographical variations of the control simulations. Each of these inferences greatly overestimates the climate sensitivity of the model, largely because of the behavior of the cloud albedo. In each inference the control results suggest that cloudiness and albedo decrease with increasing surface temperature. However, the experiment with the increased solar constant actually has higher albedo and more cloudiness at most latitudes. The increased albedo is a strong negative feedback, and this helps account for the rather weak sensitivity of the climate in the NCAR model. To the extent that these model results apply to the real world, they suggest empirical evaluation of the scaling of global-mean radiative properties with surface temperature in the present day climate provides little useful guidance for estimates of the actual climate sensitivity to global changes.展开更多
Using NCEP/NCAR reanalysis, the structure of a wintertime typhoon named Nanmadol that landed on Taiwan 4 December, 2004 has been examined in this paper. It is found that Nanmadol looks similar in structure and time ev...Using NCEP/NCAR reanalysis, the structure of a wintertime typhoon named Nanmadol that landed on Taiwan 4 December, 2004 has been examined in this paper. It is found that Nanmadol looks similar in structure and time evolution to summer typhoons;the central part of it is warm and humid, and the convergence is observed in the lower troposphere while there is divergence in the upper troposphere. The differences between wintertime and summertime typhoons are found. The southwest stream flow in the lower troposphere and cyclonic disturbance in the upper troposphere seem significantly weaker in Nanmadol than in summertime typhoons. The EOF analysis performed for sea level pressure (SLP) of Nanmadol shows that about 90% of the total variance of temporal changes in typhoon circulation can be explained by two leading EOF modes of EOF1 and EOF2. EOF1 shows the structure and intensity variations of Nanmadol while EOF2 shows the changes in environmental SLP distributions that influences the moving direction of Nanmadol.展开更多
Based on data collected during the first U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) field campaigns at Shouxian, east- ern China in 2008, the effects of clouds and aerosols on the surf...Based on data collected during the first U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) field campaigns at Shouxian, east- ern China in 2008, the effects of clouds and aerosols on the surface radiation budget during the period Octo- ber-December 2008 were studied. The results revealed that the largest longwave (LW), shortwave (SW), and net Aerosol Radiative Effects (AREs) are 12.7, -37.6, and -24.9 W rn-2, indicating that aerosols have LW warming impact, a strong SW cooling effect, and a net cooling ef- fect on the surface radiation budget at Shouxian during the study period 15 October-15 December 2008. The SW cloud radiative forcing (CRF) is -135.1 W m-2, much cooler than ARE (about 3.6 times), however, the LW CRF is 43.6 W m 2, much warmer than ARE, and resulting in a net CRF of-91.5 W m-2, about 3.7 times of net ARE. These results suggest that the clouds have much stronger LW warming effect and SW cooling effect on the surface radiation budget than AREs. The net surface radiation budget is dominated by SW cooling effect for both ARE and CRE. Furthermore, the precipitatable clouds (PCs) have the largest SW cooling effect and LW warming ef- fect, while optically thin high clouds have the smallest cooling effect and LW warming on the surface radiation budget. Comparing the two selected caseds, CloudSat cloud radar reflectivity agrees very well with the AMF (ARM Mobile Facility) WACR (W-band ARM Cloud Radar) measurements, particularly for cirrus cloud case. These result will provide a ground truth to validate the model simulations in the future.展开更多
Although Meiyu rainfall has its in-phase spatial variability over the Changjiang-Huaihe River Valley (CHRV) in most years, it is distributed in some years like a seesaw to the north and south of the Changjiang River, ...Although Meiyu rainfall has its in-phase spatial variability over the Changjiang-Huaihe River Valley (CHRV) in most years, it is distributed in some years like a seesaw to the north and south of the Changjiang River, when the precipitation tends to be nearly normal throughout the valley, which would inevitably increase difficulties of making short-term prediction of the rainfall. For this reason, EOF analysis is made on 15 related stations’ precipitation from June to July during 1951─2004, revealing that the EOF2 mode shows largely a north-south seesaw-like pattern, and thereby classifying Meiyu patterns into two types: "northern drought and southern flood (NDSF)" and "northern flood and southern drought (NFSD)". Afterwards, the authors investigated ocean-atmospheric characteristics when these two anomalous types occured using the NCEP reanalysis (version 1) and the extended reconstructed SSTs (version 2). The results show that in the NDSF years, the low-level frontal area and moisture convergence center lie more southward, accompanied by weaker subtropical summer mon- soon over East Asia, with the western Pacific subtropical high and 200 hPa South Asia High being more southward. Both the Northern and Southern Hemisphere Annular Modes are stronger than normal in preceding February; SST is higher off China during boreal winter and spring and the opposite happens in the NFSD years. Also, this seesaw-form Meiyu rainfall distribution might be affected to some degree by the previous ENSO event.展开更多
The relationship of Kuroshio sea surface temperature anomaly (SSTA) in theprevious winter and summer rainfall in China was analyzed based on observational studies andnumerical simulations. Observational results indica...The relationship of Kuroshio sea surface temperature anomaly (SSTA) in theprevious winter and summer rainfall in China was analyzed based on observational studies andnumerical simulations. Observational results indicate that there is a close relation betweenKuroshio SSTA and precipitation in China. When Kuroshio SSTA is positive, the western Pacificsubtropical high will be stronger and extend farther westward in, the following summer, with Asiansummer monsoon weaker and the frontal precipitation further southward. As a result, summerprecipitation increases (decreases) in the mid-lower reaches of the Yangtze River (in North andNortheast China), and vice versa. Conclusions drawn by NCAR-CCM3 testify the observational results.展开更多
基金National Key Technology Support Program (2009BAC51B03)Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education (2007)
文摘Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Generalized Pareto Distribution. The results show that a winter climate catastrophe in southern China occurred around i99I, and the intensity of winter extreme precipitation was strengthened after climate wanning. The anomalous circulation characteristics before and after the climate wanning was further analyzed by using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. It is found that the tropical winter monsoon over East Asia is negatively correlated with the precipitation in southeastern China. After climate warming the meridionality of the circulations in middle and high latitudes increases, which is favorable for the southward movement of the cold air from the north. In addition, the increase of the temperature over southern China may lead to the decrease of the differential heating between the continent and the ocean. Consequently, the tropical winter monsoon over East Asia is weakened, which is favorable for the transport of the warm and humid air to southeastem China and the formation of the anomalous convergence of the moisture flux, resulting in large precipitation over southeastern China. As a result, the interaction between the anomalous circulations in the middle and high latitudes and lower latitudes after the climate warming plays a major role in the increase of the winter precipitation intensity over southeastem China.
基金Innovation Plans for Postgraduates of Higher Education Colleges in Jiangsu Province(E30000008098-3)Natural Science Foundation of China (40575045)+1 种基金National Key Fundamental ResearchDevelopment Plans (2004CB418302 2004CB418303)
文摘Using NCEP/NCAR daily reanalysis data and SCSMEX data, an investigation is carried out of the relationship between the position variation of the west Pacific subtropical high (WPSH) and the apparcnt heating in June 1998 based on the complete vertical vorticlty equation. It is tbund that the non-adiabatic heating plays an important role in the position variation of WPSH. In comparison with climatic mean status, the vertical change of non-adiabatic heating is stronger in the north side of WPSH in June 1998, but weaker in the south side of WPSH. The anomalous non-uniform heating induces anomalous cyclonic vorticity in South China, areas to lhe south of the Yangtze and its mid-lower valleys, but anomalous anticyclonic vorticity in the Indo-China Peninsula and South China Sea areas lead to the more southward position of WPSH than the mean.
基金funded by the National Natural Science Foundation of China(40805009) the Priority Academic Program Development(PAPD) of Jiangsu Higher Education InstitutionsSupport was from SACOL stations(Semi-Arid Climate & Environment Observatory of Lanzhou University)
文摘The vertical distribution of aerosols in the troposphere is important for determining their effects on cli- mate. The vertical distribution of aerosols under different atmospheric conditions in the free troposphere was di- rectly observed using a surface micro-pulse LIDAR (MPL) and a TP/WVP-3000 microwave radiometer at the Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL, 35.95~N, 104.10~E) in the western Loess Plateau, China, in the spring of 2008. The results showed two possible transportation paths of a sandstorm from May 1 to May 4 in 2008. In one path, sand-dust aerosols were transported toward the east from the Taklimakan Desert to the Badain Jaran Desert and the Tengger Desert by a westerly wind and then toward the southeast to Jingtai and Lanzhou. A weak aerosol index (AI) indicated another possible transport path toward the east from the Taklimakan Desert to the Qaidam Basin and through the Tibetan Plateau eastward to SACOL. The aerosol profile of sandstorm processes over the SACOL area displayed three patterns: a single peak distribution under stable at- mospheric conditions, indicating urban aerosol distribution; an exponential decrease under unstable atmospheric conditions in the presence of a sandstorm; and a slight change in the mixed layer during the first and last stages of the sandstorm, indicative of thorough mixing during lifting and deposition stages. Analyses of the aerosol layer height (ALH) showed that there are two types of ALH diurnal variation. The ALH during the first sandstorm stage was complex and disordered, and affected by atmospheric circulation. While the ALH had obvious diurnal variation in the other stage, the ALH and aerosol extinction coefficient (AEC) had a single peak, and was higher in the af- ternoon and lower in the morning. In the second case the ALH was in agreement with the atmospheric boundary layer height (BLH) variation. As a result of the development of the atmospheric boundary layer (ABL) during day and maintenance at night, ALH during sandstorm-free days showed obvious diurnal variations. Multiple vertical distribu- tion patterns of sand-dust aerosols will result in different climate effects; therefore, the vertical distribution patterns can be used to parameterize climate and aerosol models.
基金National Development and Plan for Key Foundamental Research (2009CB421505)11th National Five-Year Plan for Science Support (2006BAC02B)+1 种基金National Natural Science Foundation (40775058)Natural Science Foundation of Guangxi (2010GXNSFA013010)
文摘The NCEP/NCAR reanalysis data are used to investigate the role of cold air and moisture characteristics during the evolution of two cases of tropical cyclones (Nanmadol and Irma) which made landfall on China in wintertime. The results are shown as follows. (1) The East Asia trough steered the cold air into the tropical ocean in early winter. The tropical cyclones moved in opposite directions with a high moving out to sea and the enhancement of the pressure gradient at the periphery played a role in maintaining and strengthening the intensity of the storms. The intrusion of weak cold air into the low levels of the tropical cyclones strengthened them by improving the cyclonic disturbance when they were still over the warm sea surface. When the cold air was strong enough and intruded into the eyes, the warm cores were damaged and stuffed before dissipation. (2) The tropical cyclones were formed in a convergence zone of moisture flux and their development could enhance the disturbance of water vapor convergence, thus strengthening the moisture convergence zone. However, when they were outside the moisture zone, the storms could not gain sufficient water vapor and became weak. There were no belts of strong moisture transportation during the wintertime tropical cyclone processes.
文摘A control integration with the normal solar constant and one with it increased by 2.5% in the National Center for Atmospheric Research (NCAR) coupled atmosphere-ocean Climate System Model were conducted to see how well the actual realized global warming could be predicted just by analysis of the control results. This is a test, within a model context, of proposals that have been advanced to use knowledge of the present day climate to make "empirical" estimates of global climate sensitivity. The scaling of the top-of-the-atmosphere infrared flux and the planetary albedo as functions of surface temperature was inferred by examining four different temporal and geographical variations of the control simulations. Each of these inferences greatly overestimates the climate sensitivity of the model, largely because of the behavior of the cloud albedo. In each inference the control results suggest that cloudiness and albedo decrease with increasing surface temperature. However, the experiment with the increased solar constant actually has higher albedo and more cloudiness at most latitudes. The increased albedo is a strong negative feedback, and this helps account for the rather weak sensitivity of the climate in the NCAR model. To the extent that these model results apply to the real world, they suggest empirical evaluation of the scaling of global-mean radiative properties with surface temperature in the present day climate provides little useful guidance for estimates of the actual climate sensitivity to global changes.
基金2006BAC02B, Guangxi meteorologyical bureau research foundation (QK200603)
文摘Using NCEP/NCAR reanalysis, the structure of a wintertime typhoon named Nanmadol that landed on Taiwan 4 December, 2004 has been examined in this paper. It is found that Nanmadol looks similar in structure and time evolution to summer typhoons;the central part of it is warm and humid, and the convergence is observed in the lower troposphere while there is divergence in the upper troposphere. The differences between wintertime and summertime typhoons are found. The southwest stream flow in the lower troposphere and cyclonic disturbance in the upper troposphere seem significantly weaker in Nanmadol than in summertime typhoons. The EOF analysis performed for sea level pressure (SLP) of Nanmadol shows that about 90% of the total variance of temporal changes in typhoon circulation can be explained by two leading EOF modes of EOF1 and EOF2. EOF1 shows the structure and intensity variations of Nanmadol while EOF2 shows the changes in environmental SLP distributions that influences the moving direction of Nanmadol.
基金sponsored by the U.S. DOE Office of Energy Research,Office of Health and Environmental Research,Environmental Sciences Divisionthe support of DOE Atmospheric System Research(ASR) project with award number DE-SC0008468 at University of North Dakota+3 种基金funded by the Key Laboratory of Meteorological Disaster of Ministry of Education (KLME)(KLME1206)the National Natural Science Foundation of China(41275043 and 41175035)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the National Basic Research Program of China(973 Program,2013CB955800) at Beijing Normal University
文摘Based on data collected during the first U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) field campaigns at Shouxian, east- ern China in 2008, the effects of clouds and aerosols on the surface radiation budget during the period Octo- ber-December 2008 were studied. The results revealed that the largest longwave (LW), shortwave (SW), and net Aerosol Radiative Effects (AREs) are 12.7, -37.6, and -24.9 W rn-2, indicating that aerosols have LW warming impact, a strong SW cooling effect, and a net cooling ef- fect on the surface radiation budget at Shouxian during the study period 15 October-15 December 2008. The SW cloud radiative forcing (CRF) is -135.1 W m-2, much cooler than ARE (about 3.6 times), however, the LW CRF is 43.6 W m 2, much warmer than ARE, and resulting in a net CRF of-91.5 W m-2, about 3.7 times of net ARE. These results suggest that the clouds have much stronger LW warming effect and SW cooling effect on the surface radiation budget than AREs. The net surface radiation budget is dominated by SW cooling effect for both ARE and CRE. Furthermore, the precipitatable clouds (PCs) have the largest SW cooling effect and LW warming ef- fect, while optically thin high clouds have the smallest cooling effect and LW warming on the surface radiation budget. Comparing the two selected caseds, CloudSat cloud radar reflectivity agrees very well with the AMF (ARM Mobile Facility) WACR (W-band ARM Cloud Radar) measurements, particularly for cirrus cloud case. These result will provide a ground truth to validate the model simulations in the future.
基金Supported by the National Natural Science Foundation of China (Grant No. 40605022)the National Basic Research Program of China (Grant No. 2006CB403607)the Key Project of the Ministry of Science and Technology, China "South China Sea Monsoon Experiment (SCSMEX)"
文摘Although Meiyu rainfall has its in-phase spatial variability over the Changjiang-Huaihe River Valley (CHRV) in most years, it is distributed in some years like a seesaw to the north and south of the Changjiang River, when the precipitation tends to be nearly normal throughout the valley, which would inevitably increase difficulties of making short-term prediction of the rainfall. For this reason, EOF analysis is made on 15 related stations’ precipitation from June to July during 1951─2004, revealing that the EOF2 mode shows largely a north-south seesaw-like pattern, and thereby classifying Meiyu patterns into two types: "northern drought and southern flood (NDSF)" and "northern flood and southern drought (NFSD)". Afterwards, the authors investigated ocean-atmospheric characteristics when these two anomalous types occured using the NCEP reanalysis (version 1) and the extended reconstructed SSTs (version 2). The results show that in the NDSF years, the low-level frontal area and moisture convergence center lie more southward, accompanied by weaker subtropical summer mon- soon over East Asia, with the western Pacific subtropical high and 200 hPa South Asia High being more southward. Both the Northern and Southern Hemisphere Annular Modes are stronger than normal in preceding February; SST is higher off China during boreal winter and spring and the opposite happens in the NFSD years. Also, this seesaw-form Meiyu rainfall distribution might be affected to some degree by the previous ENSO event.
基金This study is supported by the National Natural Science Foundation of China under No. Grant 40175023 and by the GradateEducation and Innovation Project of Jiangsu Province: No. E30000008098-2.
文摘The relationship of Kuroshio sea surface temperature anomaly (SSTA) in theprevious winter and summer rainfall in China was analyzed based on observational studies andnumerical simulations. Observational results indicate that there is a close relation betweenKuroshio SSTA and precipitation in China. When Kuroshio SSTA is positive, the western Pacificsubtropical high will be stronger and extend farther westward in, the following summer, with Asiansummer monsoon weaker and the frontal precipitation further southward. As a result, summerprecipitation increases (decreases) in the mid-lower reaches of the Yangtze River (in North andNortheast China), and vice versa. Conclusions drawn by NCAR-CCM3 testify the observational results.