The growth and characterization of single-crystalline thin films of topological insulators(TIs)is an important step towards their possible applications.Using in situ scanning tunneling microscopy(STM)and angle-resolve...The growth and characterization of single-crystalline thin films of topological insulators(TIs)is an important step towards their possible applications.Using in situ scanning tunneling microscopy(STM)and angle-resolved photoemission spectroscopy(ARPES),we show that moderately thick Sb_(2)Te_(3)films grown layer-by-layer by molecular beam epitaxy(MBE)on Si(111)are atomically smooth,single-crystalline,and intrinsically insulating.Furthermore,these films were found to exhibit a robust TI electronic structure with their Fermi energy lying within the energy gap of the bulk that intersects only the Dirac cone of the surface states.Depositing Cs in situ moves the Fermi energy of the Sb_(2)Te_(3)films without changing the electronic band structure,as predicted by theory.We found that the TI behavior is preserved in Sb_(2)Te_(3)films down to five quintuple layers(QLs).展开更多
基金The work is supported by the National Natural Science Foundation of China(NSFC)the National Basic Research Program of the Ministry of Science and Technology of China(MOST)Work at Pennsylvania State University is supported by the National Science Foundation(NSF)under Grant No.DMR 0908700.
文摘The growth and characterization of single-crystalline thin films of topological insulators(TIs)is an important step towards their possible applications.Using in situ scanning tunneling microscopy(STM)and angle-resolved photoemission spectroscopy(ARPES),we show that moderately thick Sb_(2)Te_(3)films grown layer-by-layer by molecular beam epitaxy(MBE)on Si(111)are atomically smooth,single-crystalline,and intrinsically insulating.Furthermore,these films were found to exhibit a robust TI electronic structure with their Fermi energy lying within the energy gap of the bulk that intersects only the Dirac cone of the surface states.Depositing Cs in situ moves the Fermi energy of the Sb_(2)Te_(3)films without changing the electronic band structure,as predicted by theory.We found that the TI behavior is preserved in Sb_(2)Te_(3)films down to five quintuple layers(QLs).