Axon branching enables neurons to contact with multiple targets and respond to their microenvironment.Owing to its importance in neuronal network formation,axon branching has been studied extensively during the past d...Axon branching enables neurons to contact with multiple targets and respond to their microenvironment.Owing to its importance in neuronal network formation,axon branching has been studied extensively during the past decades.It is reported that ECM(Extra Cellular Matrix)components such as laminin,collagen,and tenascin regulate the morphology and motility of neuronal growth cones in culture,but the effects of their distribution and the change of density on axon branching are not well understood.We fabricated chemically homogeneous substrate by microcontact printing(μCP)and inhomogeneous substrate with different laminin density展开更多
In this work, melamine-formaldehyde resin was cationized by adding modifiers so that the fibers closely bonded to improve their usability and the wet strength of paper was greatly improved. Triethanolamine and dimethy...In this work, melamine-formaldehyde resin was cationized by adding modifiers so that the fibers closely bonded to improve their usability and the wet strength of paper was greatly improved. Triethanolamine and dimethylamine were added to modify the melamine-formaldehyde resin,respectively.The mechanism of the cationized resin was explored and the possible chemical reactions were deduced. It was concluded that,with the use of triethanolamine,the most optimum product was obtained by hydroxymethylation for 30 min with a temperature of 85℃ and p H of 9. 0 where n( melamine) ∶ n( formaldehyde) ∶ n( methanol) ∶ n( triethanolamine) was 100 ∶ 330 ∶ 450 ∶ 15. With the combined use of dimethylamine and methanol,the optimal product was acquired by condensation for 30 min at a temperature of 50℃ and p H of 2. 0 at melamine, formaldehyde, methanol, and dimethylamine molar ratio of100∶ 330∶ 350∶ 20. With the only use of dimethylamine,the optimal product was obtained by condensation at melamine,formaldehyde,dimethylamine molar ratio of 100∶ 330∶ 10. The wet tensile strength of fruit-bagging paper was improved by adding cationized melamine-formaldehyde resin. The zeta potential,charge density,and conductivity of the melamine-formaldehyde resin were also studied.展开更多
Nanocelluloses, obtained from the biopolymer cellulose, are a class of renewable functional nanomaterials with excellent properties and a broad range of applications. This review mainly illustrates practical and advan...Nanocelluloses, obtained from the biopolymer cellulose, are a class of renewable functional nanomaterials with excellent properties and a broad range of applications. This review mainly illustrates practical and advanced applications of nanocellulose-based materials in the following categories.(1) Fire-resistant materials: in the section on these types of materials, the fireprotection property of nanocellulose/clay hybrid composites(clay nanopaper) is illustrated; oriented montmorillonite(MTM) provides barrier properties and low thermal conductivity whereas cellulose nanofibers(CNFs) impart favorable charring.(2) Thermal insulation materials: the best way to obtain materials with good heat insulation performance is to decrease the thermal conductivity of such materials.(3) Template materials: nanocellulose can direct the deposition and patterning of materials to form nanoparticles, nanowires, or nanotubes with improved properties.展开更多
In this study,a straightforward,one-step wet-end formation process was employed to prepare cellulose/graphene conductive paper for antistatic packing materials.Cationic polyacrylamide was introduced into the cellulose...In this study,a straightforward,one-step wet-end formation process was employed to prepare cellulose/graphene conductive paper for antistatic packing materials.Cationic polyacrylamide was introduced into the cellulose/graphene slurry to improve the graphene loading on the surfaces of the cellulose fibers.The effect of the super calender process on the properties of the cellulose/graphene conductive paper was investigated.When 55 wt% graphene was added,the volume resistivity of the cellulose/graphene conductive paper was 94.70 W·cm,decreasing to 35.46 W·cm after the super calender process.The cellulose/graphene conductive paper possessed excellent anti-static ability and could be used as an anti-static material.展开更多
Nanocellulose,a kind of cellulose with nanometer sizes,has drawn great interest in the pulp and paper industry due to its unique structure and excellent performance.It can be divided into five categories:nanocrystalli...Nanocellulose,a kind of cellulose with nanometer sizes,has drawn great interest in the pulp and paper industry due to its unique structure and excellent performance.It can be divided into five categories:nanocrystalline cellulose(NCC),nanofibrillated cellulose(NFC),bacterial cellulose(BC),electrospun cellulose nanofibers(ESC),and precipitation regenerated cellulose nanofibers(PRC).In this paper,we reviewed the industrialization progress of nanocellulose in China.Furthermore,we proposed that efficient and environmentally friendly preparation methods and high value utilization would be the focus of nanocellulose development.展开更多
The typeⅡ prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox.However,its applications are still limited b...The typeⅡ prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox.However,its applications are still limited by its inefficient transduction.Herein,we present a novel gene vector,the zwitterionic polymer-inspired material with branched structure (ZEBRA) for efficient CRISPR/Cas9 delivery.Polo-like kinase 1 (PLK1) acts as a master regulator of mitosis and overexpresses in multiple tumor cells.The Cas9 and single guide sgRNA (sgRNA)-encoded plasmid was transduced to knockout Plk1 gene,which was expected to inhibit the expression of PLK1.Our studies demonstrated that ZEBRA enabled to transduce the CRISPR/Cas9 system with large size into the cells efficiently.The transduction with ZEBRA was cell line dependent,which showed~10-fold higher in CD44-positive cancer cell lines compared with CD44-negative ones.Furthermore,ZEBRA induced highlevel expression of Cas9 proteins by the delivery of CRISPR/Cas9 and efficient gene editing of Plk1 gene,and inhibited the tumor cell growth significantly.This zwitterionic polymerinspired material is an effective and targeted gene delivery vector and further studies are required to explore its potential in gene delivery applications.展开更多
We have developed a microfluidic chip for colorimetric CH2+ detection. In this chip, it is facile to do colorimet- ric Cu2+ detection based on gold nanoparticles. This method has a dynamic detection range from 0.75 ...We have developed a microfluidic chip for colorimetric CH2+ detection. In this chip, it is facile to do colorimet- ric Cu2+ detection based on gold nanoparticles. This method has a dynamic detection range from 0.75 to 50 lamol/L with only 20μL solution including detection reagents and sample. The result can be readout by naked eye and pho-tographed by digital cameras. With the help of image processing software, we could measure the RGB value and calculate the Blue/Red ratio for more accurate quantification. Tap water could be detected in this portable chip.展开更多
Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) en- vironment. The in vitro recapitulation of tissue-like structures is meaningful, not only for ...Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) en- vironment. The in vitro recapitulation of tissue-like structures is meaningful, not only for fundamental cell biology research, but also for tissue engineering (TE). Currently, TE research adopts either the top-down or bottom-up approach. The top-down approach involves defining the macroscopic tissue features using biomaterial scaffolds and seeding cells into these scaffolds. Conversely, the bottom-up approach aims at crafting small tissue building blocks with precision-engineered structural and functional microscale features, using physical and/or chemical approaches. The bottom-up strategy takes advantage of the repeating structural and functional units that facilitate cell-cell interactions and cultures multiple cells together as a functional unit of tissue. In this review, we focus on currently available microscale methods that can control mammalian cells to assemble into 3D tissue-like structures.展开更多
基金financial support is provided by the National Science Foundation of China(50902025, 20890020 and 90813032)the Ministry of Science and Technology of China(2009CB93001 and 2007CB714502)the Chinese Academy of Sciences,and the Human Frontier Science Program
文摘Axon branching enables neurons to contact with multiple targets and respond to their microenvironment.Owing to its importance in neuronal network formation,axon branching has been studied extensively during the past decades.It is reported that ECM(Extra Cellular Matrix)components such as laminin,collagen,and tenascin regulate the morphology and motility of neuronal growth cones in culture,but the effects of their distribution and the change of density on axon branching are not well understood.We fabricated chemically homogeneous substrate by microcontact printing(μCP)and inhomogeneous substrate with different laminin density
文摘In this work, melamine-formaldehyde resin was cationized by adding modifiers so that the fibers closely bonded to improve their usability and the wet strength of paper was greatly improved. Triethanolamine and dimethylamine were added to modify the melamine-formaldehyde resin,respectively.The mechanism of the cationized resin was explored and the possible chemical reactions were deduced. It was concluded that,with the use of triethanolamine,the most optimum product was obtained by hydroxymethylation for 30 min with a temperature of 85℃ and p H of 9. 0 where n( melamine) ∶ n( formaldehyde) ∶ n( methanol) ∶ n( triethanolamine) was 100 ∶ 330 ∶ 450 ∶ 15. With the combined use of dimethylamine and methanol,the optimal product was acquired by condensation for 30 min at a temperature of 50℃ and p H of 2. 0 at melamine, formaldehyde, methanol, and dimethylamine molar ratio of100∶ 330∶ 350∶ 20. With the only use of dimethylamine,the optimal product was obtained by condensation at melamine,formaldehyde,dimethylamine molar ratio of 100∶ 330∶ 10. The wet tensile strength of fruit-bagging paper was improved by adding cationized melamine-formaldehyde resin. The zeta potential,charge density,and conductivity of the melamine-formaldehyde resin were also studied.
文摘Nanocelluloses, obtained from the biopolymer cellulose, are a class of renewable functional nanomaterials with excellent properties and a broad range of applications. This review mainly illustrates practical and advanced applications of nanocellulose-based materials in the following categories.(1) Fire-resistant materials: in the section on these types of materials, the fireprotection property of nanocellulose/clay hybrid composites(clay nanopaper) is illustrated; oriented montmorillonite(MTM) provides barrier properties and low thermal conductivity whereas cellulose nanofibers(CNFs) impart favorable charring.(2) Thermal insulation materials: the best way to obtain materials with good heat insulation performance is to decrease the thermal conductivity of such materials.(3) Template materials: nanocellulose can direct the deposition and patterning of materials to form nanoparticles, nanowires, or nanotubes with improved properties.
文摘In this study,a straightforward,one-step wet-end formation process was employed to prepare cellulose/graphene conductive paper for antistatic packing materials.Cationic polyacrylamide was introduced into the cellulose/graphene slurry to improve the graphene loading on the surfaces of the cellulose fibers.The effect of the super calender process on the properties of the cellulose/graphene conductive paper was investigated.When 55 wt% graphene was added,the volume resistivity of the cellulose/graphene conductive paper was 94.70 W·cm,decreasing to 35.46 W·cm after the super calender process.The cellulose/graphene conductive paper possessed excellent anti-static ability and could be used as an anti-static material.
基金the financial support from the National Natural Science Foundation of China(21875050)
文摘Nanocellulose,a kind of cellulose with nanometer sizes,has drawn great interest in the pulp and paper industry due to its unique structure and excellent performance.It can be divided into five categories:nanocrystalline cellulose(NCC),nanofibrillated cellulose(NFC),bacterial cellulose(BC),electrospun cellulose nanofibers(ESC),and precipitation regenerated cellulose nanofibers(PRC).In this paper,we reviewed the industrialization progress of nanocellulose in China.Furthermore,we proposed that efficient and environmentally friendly preparation methods and high value utilization would be the focus of nanocellulose development.
基金National Natural Science Foundation of China(82072047,81700382)Natural Science Foundation of Guangdong Province(2019A1515012166)+2 种基金Research Foundation of Education Bureau of Guangdong Province(2021ZDZX2004)Basic and Applied Basic Research Project of Guangzhou(02080390)Outstanding Youth Development Program of Guangzhou Medical University.
文摘The typeⅡ prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox.However,its applications are still limited by its inefficient transduction.Herein,we present a novel gene vector,the zwitterionic polymer-inspired material with branched structure (ZEBRA) for efficient CRISPR/Cas9 delivery.Polo-like kinase 1 (PLK1) acts as a master regulator of mitosis and overexpresses in multiple tumor cells.The Cas9 and single guide sgRNA (sgRNA)-encoded plasmid was transduced to knockout Plk1 gene,which was expected to inhibit the expression of PLK1.Our studies demonstrated that ZEBRA enabled to transduce the CRISPR/Cas9 system with large size into the cells efficiently.The transduction with ZEBRA was cell line dependent,which showed~10-fold higher in CD44-positive cancer cell lines compared with CD44-negative ones.Furthermore,ZEBRA induced highlevel expression of Cas9 proteins by the delivery of CRISPR/Cas9 and efficient gene editing of Plk1 gene,and inhibited the tumor cell growth significantly.This zwitterionic polymerinspired material is an effective and targeted gene delivery vector and further studies are required to explore its potential in gene delivery applications.
文摘We have developed a microfluidic chip for colorimetric CH2+ detection. In this chip, it is facile to do colorimet- ric Cu2+ detection based on gold nanoparticles. This method has a dynamic detection range from 0.75 to 50 lamol/L with only 20μL solution including detection reagents and sample. The result can be readout by naked eye and pho-tographed by digital cameras. With the help of image processing software, we could measure the RGB value and calculate the Blue/Red ratio for more accurate quantification. Tap water could be detected in this portable chip.
基金supported by Ministry of Science and Technology of China(Grant Nos.2009CB930001 and 2011CB933201)Chinese Academy ofSciences(Grant No.KJCX2-YW-M15)the National Natural ScienceFoundation of China(Grant Nos.20890020,90813032,21025520 and 51073045)
文摘Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) en- vironment. The in vitro recapitulation of tissue-like structures is meaningful, not only for fundamental cell biology research, but also for tissue engineering (TE). Currently, TE research adopts either the top-down or bottom-up approach. The top-down approach involves defining the macroscopic tissue features using biomaterial scaffolds and seeding cells into these scaffolds. Conversely, the bottom-up approach aims at crafting small tissue building blocks with precision-engineered structural and functional microscale features, using physical and/or chemical approaches. The bottom-up strategy takes advantage of the repeating structural and functional units that facilitate cell-cell interactions and cultures multiple cells together as a functional unit of tissue. In this review, we focus on currently available microscale methods that can control mammalian cells to assemble into 3D tissue-like structures.