The green hydrogen generation powered by renewable electricity promises the potential decarbonization of the hard-to-abate sector and is essential for the fulfillment of the Paris Agreement that attempts to limit the ...The green hydrogen generation powered by renewable electricity promises the potential decarbonization of the hard-to-abate sector and is essential for the fulfillment of the Paris Agreement that attempts to limit the global average temperature rise in the range of 1.5–2.0 ℃ above the pre-industrial level by the end of this century. Tremendous efforts have been devoted to the optimization of the electrocatalytic performance of the catalysts under industrial-relevant current densities via rational structure design,which induces a preferential electron distribution that favors the adsorption/desorption behavior of the key intermediates, thus accelerating the reaction kinetics. In this review, a brief introduction of the current energy status will be first presented to necessitate the importance of green hydrogen.Followed by the basic concepts and fundamental understanding of the reaction mechanisms, we present efficient strategies for the enhancement of the electrocatalytic performance of the catalysts to meet the rigorous requirement under industrial conditions and the in-depth understanding behind the reinforcement will be briefly discussed next. Then the recent advances regarding the rational design of electrocatalysts operating at an industrial scale will be summarized. Finally, the challenges and perspectives in this thriving field will be proposed from our point of view.展开更多
The development of kesterite photovoltaic solar cells has been hindered by large open-circuit voltage(V_(oc))deficit.Recently,Snzn deep point defect and associative defect cluster have been recognized as the main culp...The development of kesterite photovoltaic solar cells has been hindered by large open-circuit voltage(V_(oc))deficit.Recently,Snzn deep point defect and associative defect cluster have been recognized as the main culprit for the Voc losses.Therefore,manipulating the deep-level donor of Snzn antisite defects is crucial for breaking through the bottleneck of present Cu_(2) ZnSn(S,Se)_(4)(CZTSSe)photovoltaic technology.In this study,the Snzn deep traps in CZTSSe absorber layer are suppressed by incorporation of Ge.The energy levels and concentration of Snzn defects measured by deep-level transient spectroscopy(DLTS)decrease significantly.In addition,the grain growth of CZTSSe films is also promoted due to Ge implantation,yielding the high quality absorber layer.Consequently,the efficiency of CZTSSe solar cells increases from 9.15%to 11.48%,largely attributed to the 41 mV Voc increment.展开更多
Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still h...Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still hindered by the fairly low electrical conductivity due to the significant decrease of acceptors amount.In this work, a versatile Li–Ag co-doping strategy is demonstrated to mitigate the poor electrical conductivity arising from Ag through direct incorporating Li via postdeposition treatment(PDT) on top of the Ag-substituted CZTSSe absorber. Depth characterizations demonstrate that Li incorporation increases ptype carrier concentration, improves the carrier collection within the bulk, reduces the defects energy level as well as inverts the electric field polarity at grain boundaries(GBs) for Ag-substituted CZTSSe system. Benefiting from this lithium-assisted complex engineering of electrical performance both in grain interior(GI) and GBs, the power conversion efficiency(PCE) is finally increased from 9.21% to 10.29%. This systematic study represents an effective way to overcome the challenges encountered in Ag substitution,and these findings support a new aspect that the synergistic effects of double cation dopant will further pave the way for the development of high efficiency kesterite PV technology.展开更多
Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven ...Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven water splitting is limited by inefficient connections between functional modules,lack of highly active and stable electrocatalysts,and intermittent and unpredictable renewable energy supply.Herein,we construct a dualmodulated three-dimensional(3D)NiCo_(2)O_(4)@NiCo_(2)S_(4)(denoted as NCONCS)heterostructure deposited on nickel foam as a multifunctional electrode for electrocatalytic water splitting driven by photovoltaic-powered supercapacitors.Due to a stable 3D architecture configuration,abundant active sites,efficient charge transfer,and tuned interface properties,the NCONCS delivers a high specific capacity and rate performance for supercapacitors.A twoelectrode electrolyzer assembled with the NCONCS as both the anode and the cathode only requires a low cell voltage of 1.47 V to achieve a current density of 10 mA cm^(−2) in alkaline electrolyte,which outperforms the state-of-the-art bifunctional electrocatalysts.Theoretical calculations suggest that the generated heterointerfaces in NCONCS improve the surface binding capability of reaction intermediates while regulating the local electronic structures,which thus accelerates the reaction kinetics of water electrolysis.As a proof of concept,an integrated configuration comprising a two-electrode electrolyzer driven by two series-connected supercapacitors charged by a solar cell delivers a high product yield with superior durability.展开更多
Triboelectric nanogenerators(TENG)have emerged as a highly promising energy harvesting technology,attracting significant attention in recent years for their broad applications.Gel-based TENGs,with superior stretchabil...Triboelectric nanogenerators(TENG)have emerged as a highly promising energy harvesting technology,attracting significant attention in recent years for their broad applications.Gel-based TENGs,with superior stretchability and sensitivity,have been widely reported as wearable sensors.However,the traditional hydrogel-based TENGs suffer from freezing at low temperatures and drying at high temperatures,resulting in malfunctions.In this study,we introduce an anti-freezing eutectogel,which uses a deep eutectic solvent(DES),to improve the stability and electrical conductivity of TENGs in harsh environmental conditions.The eutectogel-based TENG(E-TENG)produces an open-circuit voltage of 776 V,a short-circuit current of 1.54μA,and a maximum peak power of 1.1 mW.Moreover,the E-TENG exhibits exceptional mechanical properties with an elongation at a break of 476%under tension.Importantly,it maintains impressive performances across a wide temperature range from−18 to 60℃,with conductivities of 2.15 S/m at−10℃and 1.75 S/m at−18℃.Based on the excellent weight stability of the E-TENG sensor,motion sensing can be achieved in the air,and even underwater.Finally,the versatility of the E-TENG can serve as a wearable sensor,by integrating it with Bluetooth technology.The self-powered E-TENG can monitor various human motion signals in real-time and send the health signals directly to mobile phones.This research paves a new road for the applications of TENGs in harsh environments,offering wireless flexible sensors with real-time health signal monitoring capabilities.展开更多
Free radicals can improve the reaction rate,but most of them are unstable due to unpaired electrons.Simultaneously maintaining their stability and activity is challenging.Herein,taking sulfur(S)radicals as an example,...Free radicals can improve the reaction rate,but most of them are unstable due to unpaired electrons.Simultaneously maintaining their stability and activity is challenging.Herein,taking sulfur(S)radicals as an example,we propose a strategy in which solvated metal complexes constructed by Al(acetylacetonate)_(3)and different solvents can stabilize high concentrations of S radicals with good activity through ion–dipole interactions.Based on this strategy,it is first demonstrated that S_(4)^(·-)is selectively stabilized by controlling the configurations of the solvated complexes.As a result,the reaction rate of S↔Li_(2)S is increased by 8 times,and the energy efficiency and rate capability of the Li–S batteries are significantly improved,especially the 5-fold increase in cell capacities at a low electrolyte/sulfur ratio.This work provides an important strategy in which solvated metal complexes balance the activity and stability of free radicals to accelerate reactions and their application in various fields.展开更多
The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large ...The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large open-circuit voltage deficit(V_(oc,deficit)) and significantly limit kesterite photovoltaics performance,primarily arising from the generated more recombination centers and insufficient p to n conversion at p-n junction. Herein, we establish a surface defects ordering structure in CZTSSe system via local substitution of Cu by Ag to suppress disordered Cu_(Zn) defects and generate benign n-type Zn_(Ag) donors. Taking advantage of the decreased annealing temperature of Ag F post deposition treatment(PDT), the high concentration of Ag incorporated into surface absorber facilitates the formation of surface ordered defect environment similar to that of efficient CIGS PV. The manipulation of highly doped surface structure could effectively reduce recombination centers, increase depletion region width and enlarge the band bending near p-n junction. As a result, the Ag F-PDT device finally achieves maximum efficiency of 12.34% with enhanced V_(oc) of 0.496 V. These results offer a new solution route in surface defects and energy-level engineering, and open the way to build up high quality p-n junction for future development of kesterite technology.展开更多
This paper reports that Cr2O3 hollow nanospheres (HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy, x-ray powder diffraction, transmission electron microscopy (TEM...This paper reports that Cr2O3 hollow nanospheres (HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy, x-ray powder diffraction, transmission electron microscopy (TEM), selective area electron diffraction and high resolution TEM, respectively. In addition, the room-temperature (RT) gas sensing properties of Cr2O3 HNs and conventional powders (CPs) were investigated by means of the surface photovoltage technique. The experimental data demonstrate that the RT gas sensor of the as-fabricated HNs reaches below 5 ppm whereas that of the CPs is about 40 ppm, which results from there being much more adsorbed and desorbed oxygen in HNs than in CPs at RT. The as-prepared Cr2O3 HNs could have potential applications as RT nanosensors.展开更多
Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the de...Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the degradation chemistry of ether-based solvent induced by reactive oxygen species is significant importance toward selection of stable electrolytes for LOBs.Herein,we demonstrate that a great amount of H_(2) gas evolves on the Li anode during the long-term discharge process of LOBs,which is due to the electrolyte decomposition at the oxygen cathode.By coupling with in-situ and ex-situ characterization techniques,it is demonstrated that O_(2)^(-) induces the H-abstraction of tetraethylene glycol dimethyl ether(TEGDME) to produce a large amount of H_(2)O at cathode,and this H_(2)O migrates to Li anode and produce H_(2) gas.Based on the established experiments and spectra,a possible decomposition pathway of TEGDME caused by O_(2)^(-)at the discharge process is proposed.And moreover,three types of strategies are discussed to inhibit the decomposition of ether-based electrolytes,which should be highly important for the fundamental and technical advancement for LOBs.展开更多
The title compounds, 2-(3,3'-bithiophen-2,2'-yl)dibenzothiazole (BTDB) and 2-(dithieno[2,3-b:3',2'-d]thiophen-2,5-yl)dibenzothiazole (DTTDB), have been synthesized and characterized by FT-IR, NMR, MS, HRM...The title compounds, 2-(3,3'-bithiophen-2,2'-yl)dibenzothiazole (BTDB) and 2-(dithieno[2,3-b:3',2'-d]thiophen-2,5-yl)dibenzothiazole (DTTDB), have been synthesized and characterized by FT-IR, NMR, MS, HRMS and X-ray single-crystal diffraction. The crystal of BTDB crystallizes in triclinic, space group P1 with a = 9.2207(17), b = 10.453(2), c = 10.969(2) A, V= 981.2(3) A3 and Z = 2. Crystal data of DTTDB: orthorhombic system, space group Pbcn with a = 4.5290(8), b = 13.576(3), c = 32.033(6) A, V= 1969.6(6) A3 and Z = 4.展开更多
With the growing economy and technology,disease prevention and individual health are becoming more and more important.It is highly urgent to develop a non-toxic,self-powered,and safe high-voltage power source to preve...With the growing economy and technology,disease prevention and individual health are becoming more and more important.It is highly urgent to develop a non-toxic,self-powered,and safe high-voltage power source to prevent diseases spread by mosquitoes,especially in isolated or remote areas.Herein,we reported a high-performance rotary triboelectric nanogenerator(R-TENG)based on customized theoretical simulations and a ferroelectric nanocomposite intermediate layer.The customized theoretical simulations based on gradient electrode gaps were established to optimize gap angles and segment numbers of the electrodes,which could prevent air breakdown and enhance the R-TENG output energy by at least 1.5 times.Meanwhile,the electrical output performance of the TENG was further enhanced with a highly oriented BaTiO3(BTO)nanoparticles intermediate layer by about 2.5 times.The open-circuit voltage of R-TENG reached more than 6 kV and could continuously light 3420 light-emitting devices(LEDs)or 4 serially connected 36 W household fluorescent lamps.Therefore,a self-powered high-voltage disease prevention system is developed based on the high-performance R-TENG to reduce the risk of disease transmission.This work provides a prospective strategy for the further development of TENGs and expands practical applications of self-powered and high-voltage systems.展开更多
Constructing graphene-based heterostructures with large interfacial area is an efficient approach to enhance the electrochemical performance of supercapacitors but remains great challenges in their synthesis.Herein,a ...Constructing graphene-based heterostructures with large interfacial area is an efficient approach to enhance the electrochemical performance of supercapacitors but remains great challenges in their synthesis.Herein,a novel ultra-small amorphous Fe_(2)O_(3)nanodots/graphene heterostructure(a-Fe_(2)O_(3)NDs/RGO)aerogel was facilely synthesized via excessive metal-ion-induced self-assembly and subsequent calcination route using Prussian blue/graphene oxide(PB/GO)composite aerogel as precursors.The deliberately designed a-Fe_(2)O_(3)NDs/RGO heterostructure offers a highly interconnected porous conductive network,large heterostructure interfacial area,and plenty of accessible active sites,greatly facilitating the electron transfer,electrolyte diffusion,and pseudocapacitive reactions.The obtained a-Fe_(2)O_(3)NDs/RGO aerogel could be used as flexible free-standing electrodes after mechanical compression,which exhibited a significantly enhanced specific capacitance of 347.4 F·g^(-1)at 1 A·g^(-1),extraordinary rate capability of 184 F·g^(-1)at 10 A·g^(-1),and decent cycling stability.With the as-prepared a-Fe_(2)O_(3)NDs/RGO as negative electrodes and the Co_(3)O_(4)NDs/RGO as positive electrodes,an all-solid-state asymmetric supercapacitor(a-Fe_(2)O_(3)NDs/RGO//Co_(3)O_(4)NDs/RGO asymmetric supercapacitor(ASC))was assembled,which delivered a high specific capacitance of 69.1 F·g^(-1)at 1 A·g^(-1)and an impressive energy density of 21.6 W·h·k·g^(-1)at 750 W·k·g^(-1),as well as good cycling stability with a capacity retention of 94.3%after 5,000 cycles.This work provides a promising avenue to design high-performance graphene-based composite electrodes and profound inspiration for developing advanced flexible energy-storage devices.展开更多
As a promising graphene analogue,two-dimensional(2D)polymer nanosheets with unique 2D features,diversified topological structures and as well as tunable electronic properties,have received extensive attention in recen...As a promising graphene analogue,two-dimensional(2D)polymer nanosheets with unique 2D features,diversified topological structures and as well as tunable electronic properties,have received extensive attention in recent years.Here in this review,we summarized the recent research progress in the preparation methods of 2D polymer nanosheets,mainly including interfacial polymerization and solution polymerization.We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications,such as batteries,supercapacitors,electrocatalysis and photocatalysis.Finally,on the basis of their current development,we put forward the existing challenges and some personal perspectives.展开更多
The development of cost-effective and highperformance electrocatalysts has been increasingly studied to mitigate upcoming energy and environmental challenges.Amorphization and heterointerface engineering have played s...The development of cost-effective and highperformance electrocatalysts has been increasingly studied to mitigate upcoming energy and environmental challenges.Amorphization and heterointerface engineering have played significant roles in the rational design of electrocatalysts and modulation of their electrocatalytic activities.However,the synergistic effect between amorphization and heterointerfaces has been scarcely reported.As a proof-of-concept attempt,we develop amorphous FeMo(a-FeMo)electrocatalysts with an abundance of heterointerfaces that are composed of amorphous components and evaluate their electrocatalytic performances toward the nitrogen reduction reaction and oxygen evolution reaction(OER).Benefitting from the synergistic effect between the amorphous nature of the a-FeMo electrocatalysts,which offer a high density of active sites,and significant electron redistribution at the heterointerfaces,the electrocatalysts exhibit a high Faradaic efficiency of 29.15%,an elevated yield rate of 71.78μg_(NH_(3)) mg_(cat.)^(-1) h^(-1) with long-term stability at a potential of-0.1V vs.reversible hydrogen electrode and excellent electrocatalytic activity toward the OER.This study provides a promising and effective method for the rational design of low-cost heterogeneous catalysts with desirable efficiency,selectivity,and stability.展开更多
To realize high performance flexible transparent electronics with extreme environmental adaptivity,Ag nanowires(Ag NWs)electrodes should simultaneously meet the requirements of high-temperature tolerance,chemical and ...To realize high performance flexible transparent electronics with extreme environmental adaptivity,Ag nanowires(Ag NWs)electrodes should simultaneously meet the requirements of high-temperature tolerance,chemical and mechanical robustness.Herein,a scalable Ag NWs bundle micro-meshes embedded in polyimide(Ag BMs/ePI)conducting film via a facile spray coating and transfer method is reported.Due to the synergistic effect of bundle micromesh and embedded architecture,the Ag BMs/ePI electrode exhibits high thermal stability(370℃ and 400℃ under ambient and nitrogen atmosphere conditions,respectively),low sheet resistance variation(<4%),good corrosion and deformation resistance.As an electrical heater,the Ag BMs/ePI can achieve~204℃ with the fast thermal response time of~8 s at 8 V,and exhibits good heating stability under bent condition.This work offers a promising platform for the emerging flexible transparent electronics to adapt extreme environments,especially for those devices which require high-temperature processing.展开更多
Large quantities of CdS nanorods are successfully synthesized through Cd(CH3COO)2·2H2O reacting with Na2S·9H2O and EDA in aqueous solution. XRD result shows that the sample is of hexagonal structure. And TEM...Large quantities of CdS nanorods are successfully synthesized through Cd(CH3COO)2·2H2O reacting with Na2S·9H2O and EDA in aqueous solution. XRD result shows that the sample is of hexagonal structure. And TEM result shows that the morphologies of the resulting CdS are mainly in three-armed rod-like structure with a diameter of 10―15 nm and a length of 100 nm. The nanocomposites of CdS/PVK with different molar ratios are prepared by spin coating method on tin-doped indium oxide (ITO) substrate. A notable decrease of photoluminescence (PL) efficiency and a significant enhance-ment of surface photovoltage signal have been observed in CdS/PVK composites when the molar frac-tion of CdS increases. We interpret these results as the energy level matching between CdS and PVK in nanocomposites. This energy level matching facilitates fast interfacial charge transfer then increases the separation efficiency of electron-hole pairs and the carrier generation efficiency. The detailed charge transfer process has also been demonstrated.展开更多
Interfacial engineering is a powerful method to improve the bifunctional electrocatalytic performance of pure phase catalysts.While it is expected to further optimize the electronic configuration of heterojunctions to...Interfacial engineering is a powerful method to improve the bifunctional electrocatalytic performance of pure phase catalysts.While it is expected to further optimize the electronic configuration of heterojunctions to boost the reaction kinetics in hydrogen/oxygen evolution reaction(HER/OER),but remains a challenge.Herein,a novel in situ hybrid heterojunction strategy is developed to construct 2D porous Co-doped Ni/Ni_(3)N heterostructure nanosheets(Co-Ni/Ni_(3)N)by pyrolysis of partially cobalt substituted nickel-zeolitic imidazolate framework(CoNi-ZIF)nanosheets under NH3 atmosphere.A combined experimental and theoretical studies manifest that the hybrid heterostructures can display regulative electronic states and downshift d-band center from the Fermi level,as well as optimize the adsorption energy of reaction intermediates,thus reducing the thermodynamic energy barriers and accelerating the catalytic kinetics.Consequently,benefitting from the optimized electronic configuration,hierarchical hollow nanosheets architecture,and abundant doped heterojunctions,the hybrid Co-Ni/Ni_(3)N heterostructure catalyst exhibits efficient catalytic activity for both HER(60 mV)and OER(322 mV)at 10 mA cm^(-2)in alkaline media,which is 105 and 47 mV lower than that of pure Ni_(3)N,respectively.The electrochemically active surface area of Co-Ni/Ni_(3)N is two times higher than that of Ni3N.Furthermore,the coupled practical water electrolyzer requires a low voltage of 1.575 V to reach 10 mA cm^(-2),and it can be driven by a 1.5 V battery.This work highlights the interface engineering guidance for the rational establishment of hybrid interfaces by electronic modulation of interfacial effect for alkaline water splitting.展开更多
基金supported by the Program for Innovative Research Team in University of Henan Province(21IRTSTHN009)the Science and Technology Development Plan of Henan Province(212300410029,202300410087,202102210251)+2 种基金the Central Government of Shenzhen Guided the Local Science and Technology Exhibition Special Funds(2021Szvup031)the National Natural Science Foundation of China(52102166)the China Postdoctoral Science Foundation(2019M663058,2021M701065,2019M652749,2021M701071)。
文摘The green hydrogen generation powered by renewable electricity promises the potential decarbonization of the hard-to-abate sector and is essential for the fulfillment of the Paris Agreement that attempts to limit the global average temperature rise in the range of 1.5–2.0 ℃ above the pre-industrial level by the end of this century. Tremendous efforts have been devoted to the optimization of the electrocatalytic performance of the catalysts under industrial-relevant current densities via rational structure design,which induces a preferential electron distribution that favors the adsorption/desorption behavior of the key intermediates, thus accelerating the reaction kinetics. In this review, a brief introduction of the current energy status will be first presented to necessitate the importance of green hydrogen.Followed by the basic concepts and fundamental understanding of the reaction mechanisms, we present efficient strategies for the enhancement of the electrocatalytic performance of the catalysts to meet the rigorous requirement under industrial conditions and the in-depth understanding behind the reinforcement will be briefly discussed next. Then the recent advances regarding the rational design of electrocatalysts operating at an industrial scale will be summarized. Finally, the challenges and perspectives in this thriving field will be proposed from our point of view.
基金financially supported by the National Natural Science Foundation of China(U1904192,62074052,52072327,61974173,61874159 and 51802081)the Key Science and Technology Research Project of Education Department of Henan Province(19A140003)+1 种基金the Key Science and Technology Program of Henan Province(192102210001)Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(202101510004)。
文摘The development of kesterite photovoltaic solar cells has been hindered by large open-circuit voltage(V_(oc))deficit.Recently,Snzn deep point defect and associative defect cluster have been recognized as the main culprit for the Voc losses.Therefore,manipulating the deep-level donor of Snzn antisite defects is crucial for breaking through the bottleneck of present Cu_(2) ZnSn(S,Se)_(4)(CZTSSe)photovoltaic technology.In this study,the Snzn deep traps in CZTSSe absorber layer are suppressed by incorporation of Ge.The energy levels and concentration of Snzn defects measured by deep-level transient spectroscopy(DLTS)decrease significantly.In addition,the grain growth of CZTSSe films is also promoted due to Ge implantation,yielding the high quality absorber layer.Consequently,the efficiency of CZTSSe solar cells increases from 9.15%to 11.48%,largely attributed to the 41 mV Voc increment.
基金the National Natural Science Foundation of China(61874159,61974173,51702085,51802081 and 21603058)the Joint Talent Cultivation Funds of NSFC-HN(U1704151)the Science and Technology Innovation Talents in Universities of Henan Province(18HASTIT016)。
文摘Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still hindered by the fairly low electrical conductivity due to the significant decrease of acceptors amount.In this work, a versatile Li–Ag co-doping strategy is demonstrated to mitigate the poor electrical conductivity arising from Ag through direct incorporating Li via postdeposition treatment(PDT) on top of the Ag-substituted CZTSSe absorber. Depth characterizations demonstrate that Li incorporation increases ptype carrier concentration, improves the carrier collection within the bulk, reduces the defects energy level as well as inverts the electric field polarity at grain boundaries(GBs) for Ag-substituted CZTSSe system. Benefiting from this lithium-assisted complex engineering of electrical performance both in grain interior(GI) and GBs, the power conversion efficiency(PCE) is finally increased from 9.21% to 10.29%. This systematic study represents an effective way to overcome the challenges encountered in Ag substitution,and these findings support a new aspect that the synergistic effects of double cation dopant will further pave the way for the development of high efficiency kesterite PV technology.
文摘Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven water splitting is limited by inefficient connections between functional modules,lack of highly active and stable electrocatalysts,and intermittent and unpredictable renewable energy supply.Herein,we construct a dualmodulated three-dimensional(3D)NiCo_(2)O_(4)@NiCo_(2)S_(4)(denoted as NCONCS)heterostructure deposited on nickel foam as a multifunctional electrode for electrocatalytic water splitting driven by photovoltaic-powered supercapacitors.Due to a stable 3D architecture configuration,abundant active sites,efficient charge transfer,and tuned interface properties,the NCONCS delivers a high specific capacity and rate performance for supercapacitors.A twoelectrode electrolyzer assembled with the NCONCS as both the anode and the cathode only requires a low cell voltage of 1.47 V to achieve a current density of 10 mA cm^(−2) in alkaline electrolyte,which outperforms the state-of-the-art bifunctional electrocatalysts.Theoretical calculations suggest that the generated heterointerfaces in NCONCS improve the surface binding capability of reaction intermediates while regulating the local electronic structures,which thus accelerates the reaction kinetics of water electrolysis.As a proof of concept,an integrated configuration comprising a two-electrode electrolyzer driven by two series-connected supercapacitors charged by a solar cell delivers a high product yield with superior durability.
基金the Natural Science Foundation of Shandong Province,China(No.ZR2021QE043)the National Natural Science Foundation of China(Nos.52101390 and 52331004)the Open Project of Key Lab of Special Functional Materials of Ministry of Education,Henan University(No.KFKT-2022-11).
文摘Triboelectric nanogenerators(TENG)have emerged as a highly promising energy harvesting technology,attracting significant attention in recent years for their broad applications.Gel-based TENGs,with superior stretchability and sensitivity,have been widely reported as wearable sensors.However,the traditional hydrogel-based TENGs suffer from freezing at low temperatures and drying at high temperatures,resulting in malfunctions.In this study,we introduce an anti-freezing eutectogel,which uses a deep eutectic solvent(DES),to improve the stability and electrical conductivity of TENGs in harsh environmental conditions.The eutectogel-based TENG(E-TENG)produces an open-circuit voltage of 776 V,a short-circuit current of 1.54μA,and a maximum peak power of 1.1 mW.Moreover,the E-TENG exhibits exceptional mechanical properties with an elongation at a break of 476%under tension.Importantly,it maintains impressive performances across a wide temperature range from−18 to 60℃,with conductivities of 2.15 S/m at−10℃and 1.75 S/m at−18℃.Based on the excellent weight stability of the E-TENG sensor,motion sensing can be achieved in the air,and even underwater.Finally,the versatility of the E-TENG can serve as a wearable sensor,by integrating it with Bluetooth technology.The self-powered E-TENG can monitor various human motion signals in real-time and send the health signals directly to mobile phones.This research paves a new road for the applications of TENGs in harsh environments,offering wireless flexible sensors with real-time health signal monitoring capabilities.
基金This work was supported financially by the National Natural Science Foundation of China(22005085,U22A2043,21773055)Joint Fund of Science and Technology R&D Plan of Henan Province(222301420005)+1 种基金Project funded by China Postdoctoral Science Foundation(2020M682277)The authors gratefully acknowledge Dr.Rui Zhu for the discussion about modeling.
文摘Free radicals can improve the reaction rate,but most of them are unstable due to unpaired electrons.Simultaneously maintaining their stability and activity is challenging.Herein,taking sulfur(S)radicals as an example,we propose a strategy in which solvated metal complexes constructed by Al(acetylacetonate)_(3)and different solvents can stabilize high concentrations of S radicals with good activity through ion–dipole interactions.Based on this strategy,it is first demonstrated that S_(4)^(·-)is selectively stabilized by controlling the configurations of the solvated complexes.As a result,the reaction rate of S↔Li_(2)S is increased by 8 times,and the energy efficiency and rate capability of the Li–S batteries are significantly improved,especially the 5-fold increase in cell capacities at a low electrolyte/sulfur ratio.This work provides an important strategy in which solvated metal complexes balance the activity and stability of free radicals to accelerate reactions and their application in various fields.
基金supported by the National Natural Science Foundation of China(61874159,62074052,61974173,52072327,51702085 and 51802081)the Joint Talent Cultivation Funds of NSFC-HN(U1704151 and U1904192)+1 种基金the Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(202101510004)the Science and Technology Innovation Talents in Universities of Henan Province(21HASTIT023)。
文摘The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large open-circuit voltage deficit(V_(oc,deficit)) and significantly limit kesterite photovoltaics performance,primarily arising from the generated more recombination centers and insufficient p to n conversion at p-n junction. Herein, we establish a surface defects ordering structure in CZTSSe system via local substitution of Cu by Ag to suppress disordered Cu_(Zn) defects and generate benign n-type Zn_(Ag) donors. Taking advantage of the decreased annealing temperature of Ag F post deposition treatment(PDT), the high concentration of Ag incorporated into surface absorber facilitates the formation of surface ordered defect environment similar to that of efficient CIGS PV. The manipulation of highly doped surface structure could effectively reduce recombination centers, increase depletion region width and enlarge the band bending near p-n junction. As a result, the Ag F-PDT device finally achieves maximum efficiency of 12.34% with enhanced V_(oc) of 0.496 V. These results offer a new solution route in surface defects and energy-level engineering, and open the way to build up high quality p-n junction for future development of kesterite technology.
基金sponsored by the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No 2008 HASTIT002)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province of Chinathe National Natural Science Foundation of China (Grant No 20941002)
文摘This paper reports that Cr2O3 hollow nanospheres (HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy, x-ray powder diffraction, transmission electron microscopy (TEM), selective area electron diffraction and high resolution TEM, respectively. In addition, the room-temperature (RT) gas sensing properties of Cr2O3 HNs and conventional powders (CPs) were investigated by means of the surface photovoltage technique. The experimental data demonstrate that the RT gas sensor of the as-fabricated HNs reaches below 5 ppm whereas that of the CPs is about 40 ppm, which results from there being much more adsorbed and desorbed oxygen in HNs than in CPs at RT. The as-prepared Cr2O3 HNs could have potential applications as RT nanosensors.
基金the National Natural Science Foundation of China (21773055, U1604122, 22005085)。
文摘Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the degradation chemistry of ether-based solvent induced by reactive oxygen species is significant importance toward selection of stable electrolytes for LOBs.Herein,we demonstrate that a great amount of H_(2) gas evolves on the Li anode during the long-term discharge process of LOBs,which is due to the electrolyte decomposition at the oxygen cathode.By coupling with in-situ and ex-situ characterization techniques,it is demonstrated that O_(2)^(-) induces the H-abstraction of tetraethylene glycol dimethyl ether(TEGDME) to produce a large amount of H_(2)O at cathode,and this H_(2)O migrates to Li anode and produce H_(2) gas.Based on the established experiments and spectra,a possible decomposition pathway of TEGDME caused by O_(2)^(-)at the discharge process is proposed.And moreover,three types of strategies are discussed to inhibit the decomposition of ether-based electrolytes,which should be highly important for the fundamental and technical advancement for LOBs.
基金supported by the National Natural Science Foundation of China (20972041)Program for Innovation Scientists and Technicians Troop Construction Projects of Henan Province (104100510011)the Program of Henan University (SBGJ090506)
文摘The title compounds, 2-(3,3'-bithiophen-2,2'-yl)dibenzothiazole (BTDB) and 2-(dithieno[2,3-b:3',2'-d]thiophen-2,5-yl)dibenzothiazole (DTTDB), have been synthesized and characterized by FT-IR, NMR, MS, HRMS and X-ray single-crystal diffraction. The crystal of BTDB crystallizes in triclinic, space group P1 with a = 9.2207(17), b = 10.453(2), c = 10.969(2) A, V= 981.2(3) A3 and Z = 2. Crystal data of DTTDB: orthorhombic system, space group Pbcn with a = 4.5290(8), b = 13.576(3), c = 32.033(6) A, V= 1969.6(6) A3 and Z = 4.
基金The research is supported by the National Natural Science Foundation of China(Nos.52101390,52125205,U20A20166,61805015,and 61804011)Natural Science Foundation of Shandong Province,China(No.ZR2021QE043)+3 种基金Fundamental Research Funds for the Central Universities,China(No.202112011)Open Project of Key Lab of Special Functional Materials of Ministry of Education,Henan University(No.KFKT-2022-11)Natural Science Foundation of Beijing Municipality(No.Z180011)Joint Funds of National Natural Science Foundation of China(No.U2106216).
文摘With the growing economy and technology,disease prevention and individual health are becoming more and more important.It is highly urgent to develop a non-toxic,self-powered,and safe high-voltage power source to prevent diseases spread by mosquitoes,especially in isolated or remote areas.Herein,we reported a high-performance rotary triboelectric nanogenerator(R-TENG)based on customized theoretical simulations and a ferroelectric nanocomposite intermediate layer.The customized theoretical simulations based on gradient electrode gaps were established to optimize gap angles and segment numbers of the electrodes,which could prevent air breakdown and enhance the R-TENG output energy by at least 1.5 times.Meanwhile,the electrical output performance of the TENG was further enhanced with a highly oriented BaTiO3(BTO)nanoparticles intermediate layer by about 2.5 times.The open-circuit voltage of R-TENG reached more than 6 kV and could continuously light 3420 light-emitting devices(LEDs)or 4 serially connected 36 W household fluorescent lamps.Therefore,a self-powered high-voltage disease prevention system is developed based on the high-performance R-TENG to reduce the risk of disease transmission.This work provides a prospective strategy for the further development of TENGs and expands practical applications of self-powered and high-voltage systems.
基金Key Science Foundation Project of Henan Province(232300421146)the National Natural Science Foundation of China(NSFC,21905076)to Ju J+2 种基金the NSFC(22172045 and 21905077)to Yao X,and the NSFC(22205056)the Key Research Program of Higher Education of Henan Province(22A430003)to Luo YQsupported by CAS Key Laboratory of Bio-inspired Materials and Interfacial Science,Technical Institute of Physics and Chemistry。
基金the support of all the technicians at Henan Normal University and Henan Universitysupported by Zhongyuan Scholar of Henan Province(224000510007)+2 种基金the National Natural Science Foundation of China(11974103)for fundingthe financial support from the AXA research fundthe funding from Henan Province College Youth Backbone Teacher Project(2020GGJS062)。
基金the fund for post-doctoral program of Henan University to Z.H.C.(No.FJ3050A0670001)the National Natural Science Foundation of China(Nos.51672172,51872186).
文摘Constructing graphene-based heterostructures with large interfacial area is an efficient approach to enhance the electrochemical performance of supercapacitors but remains great challenges in their synthesis.Herein,a novel ultra-small amorphous Fe_(2)O_(3)nanodots/graphene heterostructure(a-Fe_(2)O_(3)NDs/RGO)aerogel was facilely synthesized via excessive metal-ion-induced self-assembly and subsequent calcination route using Prussian blue/graphene oxide(PB/GO)composite aerogel as precursors.The deliberately designed a-Fe_(2)O_(3)NDs/RGO heterostructure offers a highly interconnected porous conductive network,large heterostructure interfacial area,and plenty of accessible active sites,greatly facilitating the electron transfer,electrolyte diffusion,and pseudocapacitive reactions.The obtained a-Fe_(2)O_(3)NDs/RGO aerogel could be used as flexible free-standing electrodes after mechanical compression,which exhibited a significantly enhanced specific capacitance of 347.4 F·g^(-1)at 1 A·g^(-1),extraordinary rate capability of 184 F·g^(-1)at 10 A·g^(-1),and decent cycling stability.With the as-prepared a-Fe_(2)O_(3)NDs/RGO as negative electrodes and the Co_(3)O_(4)NDs/RGO as positive electrodes,an all-solid-state asymmetric supercapacitor(a-Fe_(2)O_(3)NDs/RGO//Co_(3)O_(4)NDs/RGO asymmetric supercapacitor(ASC))was assembled,which delivered a high specific capacitance of 69.1 F·g^(-1)at 1 A·g^(-1)and an impressive energy density of 21.6 W·h·k·g^(-1)at 750 W·k·g^(-1),as well as good cycling stability with a capacity retention of 94.3%after 5,000 cycles.This work provides a promising avenue to design high-performance graphene-based composite electrodes and profound inspiration for developing advanced flexible energy-storage devices.
基金the National Natural Science Foundation of China(Nos.51873039 and 51673042)the Young Elite Scientist Sponsorship Program by CAST(No.2017QNRC001)the fund for post-doctoral program of Henan University to Z.H.C.(No.FJ3050A0670001).
文摘As a promising graphene analogue,two-dimensional(2D)polymer nanosheets with unique 2D features,diversified topological structures and as well as tunable electronic properties,have received extensive attention in recent years.Here in this review,we summarized the recent research progress in the preparation methods of 2D polymer nanosheets,mainly including interfacial polymerization and solution polymerization.We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications,such as batteries,supercapacitors,electrocatalysis and photocatalysis.Finally,on the basis of their current development,we put forward the existing challenges and some personal perspectives.
基金supported by the National Natural Science Foundation of China(U2032149)Shenzhen Science and Technology Project(JCYJ20180507182246321)+3 种基金Hunan Provincial Natural Science Foundation of China(2020JJ2001)Hefei National Laboratory for Physical Sciences at the Microscale(KF2020108)the Fundamental Research Funds for the Central UniversitiesChina Postdoctoral Science Foundation(2019M663058 and 2019M652749).
文摘The development of cost-effective and highperformance electrocatalysts has been increasingly studied to mitigate upcoming energy and environmental challenges.Amorphization and heterointerface engineering have played significant roles in the rational design of electrocatalysts and modulation of their electrocatalytic activities.However,the synergistic effect between amorphization and heterointerfaces has been scarcely reported.As a proof-of-concept attempt,we develop amorphous FeMo(a-FeMo)electrocatalysts with an abundance of heterointerfaces that are composed of amorphous components and evaluate their electrocatalytic performances toward the nitrogen reduction reaction and oxygen evolution reaction(OER).Benefitting from the synergistic effect between the amorphous nature of the a-FeMo electrocatalysts,which offer a high density of active sites,and significant electron redistribution at the heterointerfaces,the electrocatalysts exhibit a high Faradaic efficiency of 29.15%,an elevated yield rate of 71.78μg_(NH_(3)) mg_(cat.)^(-1) h^(-1) with long-term stability at a potential of-0.1V vs.reversible hydrogen electrode and excellent electrocatalytic activity toward the OER.This study provides a promising and effective method for the rational design of low-cost heterogeneous catalysts with desirable efficiency,selectivity,and stability.
基金supported by the Guangdong Basic and Applied Basic Research Foundation program (Grant No.2020A1515110292)Shandong Provincial Natural Science Foundation (Grant No.ZR2020QF080)Qilu Young Scholar program (Grant No.11500089963022),China.
文摘To realize high performance flexible transparent electronics with extreme environmental adaptivity,Ag nanowires(Ag NWs)electrodes should simultaneously meet the requirements of high-temperature tolerance,chemical and mechanical robustness.Herein,a scalable Ag NWs bundle micro-meshes embedded in polyimide(Ag BMs/ePI)conducting film via a facile spray coating and transfer method is reported.Due to the synergistic effect of bundle micromesh and embedded architecture,the Ag BMs/ePI electrode exhibits high thermal stability(370℃ and 400℃ under ambient and nitrogen atmosphere conditions,respectively),low sheet resistance variation(<4%),good corrosion and deformation resistance.As an electrical heater,the Ag BMs/ePI can achieve~204℃ with the fast thermal response time of~8 s at 8 V,and exhibits good heating stability under bent condition.This work offers a promising platform for the emerging flexible transparent electronics to adapt extreme environments,especially for those devices which require high-temperature processing.
基金Program for New Century Excellent Talents in University (Grant No. NCET-04-0653)the National Basic Research Program of China (973 Program) (Grant No. 2007CB616911)the National Natural Science Foundation of China (Grant Nos. 20371015 and 90306010)
文摘Large quantities of CdS nanorods are successfully synthesized through Cd(CH3COO)2·2H2O reacting with Na2S·9H2O and EDA in aqueous solution. XRD result shows that the sample is of hexagonal structure. And TEM result shows that the morphologies of the resulting CdS are mainly in three-armed rod-like structure with a diameter of 10―15 nm and a length of 100 nm. The nanocomposites of CdS/PVK with different molar ratios are prepared by spin coating method on tin-doped indium oxide (ITO) substrate. A notable decrease of photoluminescence (PL) efficiency and a significant enhance-ment of surface photovoltage signal have been observed in CdS/PVK composites when the molar frac-tion of CdS increases. We interpret these results as the energy level matching between CdS and PVK in nanocomposites. This energy level matching facilitates fast interfacial charge transfer then increases the separation efficiency of electron-hole pairs and the carrier generation efficiency. The detailed charge transfer process has also been demonstrated.
基金National Natural Science Foundation of China,Grant/Award Numbers:51872110,21875221,22102050the special fund project of Zhengzhou basic and applied basic research,Grant/Award Numbers:ZZSZX202001,ZZSZX202002The Training Program of Youth Backbone Teacher of Henan Province of 2018,Grant/Award Number:2018GGJS178。
文摘Interfacial engineering is a powerful method to improve the bifunctional electrocatalytic performance of pure phase catalysts.While it is expected to further optimize the electronic configuration of heterojunctions to boost the reaction kinetics in hydrogen/oxygen evolution reaction(HER/OER),but remains a challenge.Herein,a novel in situ hybrid heterojunction strategy is developed to construct 2D porous Co-doped Ni/Ni_(3)N heterostructure nanosheets(Co-Ni/Ni_(3)N)by pyrolysis of partially cobalt substituted nickel-zeolitic imidazolate framework(CoNi-ZIF)nanosheets under NH3 atmosphere.A combined experimental and theoretical studies manifest that the hybrid heterostructures can display regulative electronic states and downshift d-band center from the Fermi level,as well as optimize the adsorption energy of reaction intermediates,thus reducing the thermodynamic energy barriers and accelerating the catalytic kinetics.Consequently,benefitting from the optimized electronic configuration,hierarchical hollow nanosheets architecture,and abundant doped heterojunctions,the hybrid Co-Ni/Ni_(3)N heterostructure catalyst exhibits efficient catalytic activity for both HER(60 mV)and OER(322 mV)at 10 mA cm^(-2)in alkaline media,which is 105 and 47 mV lower than that of pure Ni_(3)N,respectively.The electrochemically active surface area of Co-Ni/Ni_(3)N is two times higher than that of Ni3N.Furthermore,the coupled practical water electrolyzer requires a low voltage of 1.575 V to reach 10 mA cm^(-2),and it can be driven by a 1.5 V battery.This work highlights the interface engineering guidance for the rational establishment of hybrid interfaces by electronic modulation of interfacial effect for alkaline water splitting.