期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Progress in quantitative research on the relationship between atmospheric oxidation and air quality 被引量:1
1
作者 Yuesi Wang Xin Jin +12 位作者 Zirui Liu Gehui Wang Guiqian Tang Keding Lu Bo Hu Shanshan Wang Guohui Li Xinqin An Chao Wang Qihou Hu Lingyan He Fenfen Zhang Yuanhang Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第1期350-366,共17页
Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for ... Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for air pollution control in recent years,Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research.This paper will give a brief review of these developments.First,AOC indexes were established that represent apparent atmospheric oxidizing ability(AOIe)and potential atmospheric oxidizing ability(AOIp)based on aspects of macrothermodynamics and microdynamics,respectively.A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing,and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country.In addition,the detection of ground or vertical profiles for atmospheric OH·,HO_(2)·,NO_(3)·radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments.Moreover,laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O_(3)and NO_(2),which are typical oxidants in the surface/interface atmosphere,and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies,multiphase and multi-interface conditions were obtained.Finally,based on the GRAPES-CUACE adjoint model improved by Chinese scholars,simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized.Normalized numerical simulations of AOIe and AOIp were performed,and regional coordination of AOC was adjusted.An optimized plan for controlling O_(3)and PM2.5was analyzed by scenario simulation. 展开更多
关键词 Atmospheric oxidizing capacity(AOC) Quantitative index Free radicals Observation and modeling Air quality
原文传递
Molecular compositions and sources of organic aerosols at a rural site on the Guanzhong Plain,Northwest China:The importance of biomass burning
2
作者 Yali Liu Minxia Shen +9 位作者 Haijiao Liu Wenting Dai Weining Qi Yifan Zhang Lu Li Yue Cao Xin Wang Xiao Guo Yingkun Jiang Jianjun Li 《Particuology》 SCIE EI CAS 2024年第6期44-56,共13页
The concentration of PM_(2.5)has considerably reduced in recent years,but remains relatively high in China.In particular,the increasing contribution of organic compounds to PM_(2.5)generates popular pressure for furth... The concentration of PM_(2.5)has considerably reduced in recent years,but remains relatively high in China.In particular,the increasing contribution of organic compounds to PM_(2.5)generates popular pressure for further reductions,resulting in an urgent need to study organic aerosol(OA).To investigate the molecular composition and source contribution of OA in the rural area of the Guanzhong Plain,Northwest China,PM_(2.5)samples were collected during 3–23 August 2016 and 5–20 January 2017 and studied for more than 100 organic tracer compounds.The mean concentration of total measured organic compounds is 662±296 ng/m^(3)in summer and 3258±1925 ng/m^(3)in winter.Levoglucosan is the most abundant single compound found throughout the sampling period,which is a crucial tracer for biomass burning emissions,preliminary suggesting that biomass burning is an essential source of OA.In summer,organic compounds such as lipid compounds,sugar compounds,and polycyclic aromatic hydrocarbons(PAHs),more come from higher plants,wood burning,vehicle exhausts,plastic waste,and other direct emission sources.Oxygenated PAHs(OPAHs),nitrophenols,and phthalic acids more come from the atmosphere through the oxidation reaction of aromatic precursors,especially photochemical oxidation.However,in winter,most of the increases in concentrations of organic compounds are attributed to biomass burning.The analysis of a haze event(14–19 January 2017)during the winter sampling period shows that the increases in the concentration of organic compounds are unaccompanied by strong secondary formation under lower relative humidity(49.1%±13.5%).The main reason for the growth of OA in this haze event is the accumulation of primary OA(POA).The source apportionment by the positive matrix factorization(PMF)model shows that biomass burning(37.1%)is the primary source of OA in the rural regions of the Guanzhong Plain,especially in winter(40.6%).The contribution of secondary formation decreases from 26.0%in summer to 16.9%in winter,and the contribution of fossil fuel emissions is comparable across both seasons. 展开更多
关键词 Organic aerosol Molecular composition Seasonal variation Source apportionment Guanzhong Plain
原文传递
Chemical characteristics of haze particles in Xi'an during Chinese Spring Festival: Impact of fireworks burning 被引量:11
3
作者 Can Wu Gehui Wang +9 位作者 Jiayuan Wang Jianjun Li Yanqin Ren Lu Zhang Cong Cao Jin Li Shuagshuang Ge Yuning Xie Xinpei Wang Guoyan Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第9期179-187,共9页
Fireworks burning releases massive fine particles and gaseous pollutants, significantly deteriorating air quality during Chinese Lunar New Year (LNY) period. To investigate the impact of the fireworks burning on the... Fireworks burning releases massive fine particles and gaseous pollutants, significantly deteriorating air quality during Chinese Lunar New Year (LNY) period. To investigate the impact of the fireworks burning on the atmospheric aerosol chemistry, 1-hr time resolution of PM2.5 samples in Xi'an during the winter of 2016 including the LNY were collected and detected for inorganic ions, acidity and liquid water content (LWC) of the fine aerosols. PM2.5 during the LNY was 167 ± 87 μg/m^3, two times higher than the China National Ambient Air Quality Standard (75 μg/m^3). K^+ (28 wt.% of the total ion mass) was the most abundant ion in the LNY period, followed by SO^2-4 (25 wt.%) and C1^- (18 wt.%). In contrast, NO^-3 (34 wt.%) was the most abundant species in the haze periods (hourly PM2.5 〉 75 μg/m^3), followed by SO^2-4 (29.2 wt.%) and NH^+4 (16.3 wt.%), while SC94 (35 wt.%) was the most abundant species in the clean periods (hourly PM2.5 〈 75 μg/m^3), followed by NO^-3 (23.1 wt.%) and NH^+4 (11 wt.%). Being different from the acidic nature in the non-LNY periods, aerosol in the LNY period presented an alkaline nature with a pH value of 7.8 ± 1.3. LWC during the LNY period showed a robust linear correlation with K2SO4 and KC1, suggesting that aerosol hygroscopicity was dominated by inorganic salts derived from fireworks burning. Analysis of correlations between the ratios of NO^-3/SO^2-4 and NH^+4/SO^2-4 indicated that heterogeneous reaction of HNO3 with NH3 was an important formation pathway of particulate nitrate and ammonium during the LNY period. 展开更多
关键词 Inorganic ions Aerosol acidity Liquid water content Composition and source Nitrate formation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部