For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to...For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.展开更多
There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world.In most cases,the extraction of copper from such raw...There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world.In most cases,the extraction of copper from such raw materials is achieved by applying the leaching procedures.However,its low extraction efficiency and the long extraction period limit its large-scale commercial applications in copper recovery,even though bioleaching has been widely employed commercially for heap and dump bioleaching of secondary copper sulfide ores.Overcoming the technical challenges requires a better understanding of leaching kinetics and on-site microbial activities.Herein,this paper reviews the current status of main commercial biomining operations around the world,identifies factors that affect chalcocite dissolution both in chemical leaching and bioleaching,summarizes the related kinetic research,and concludes with a discussion of two on-site chalcocite heap leaching practices.Further,the challenges and innovations for the future development of chalcocite hydrometallurgy are presented in the end.展开更多
基金Projects(51374248,51320105006) supported by National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692) supported by the China Postdoctoral Science Foundation
文摘For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.
基金supported by the National Natural Science Foundation of China(U1932129,51774332,51934009 and 52004086)Natural Science Foundation of Hunan Province(No.2018JJ1041),Fundamental Research Funds for the Central Universities of Central South University(Nos.2021zzts0301 and 2021zzts0299)。
文摘There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world.In most cases,the extraction of copper from such raw materials is achieved by applying the leaching procedures.However,its low extraction efficiency and the long extraction period limit its large-scale commercial applications in copper recovery,even though bioleaching has been widely employed commercially for heap and dump bioleaching of secondary copper sulfide ores.Overcoming the technical challenges requires a better understanding of leaching kinetics and on-site microbial activities.Herein,this paper reviews the current status of main commercial biomining operations around the world,identifies factors that affect chalcocite dissolution both in chemical leaching and bioleaching,summarizes the related kinetic research,and concludes with a discussion of two on-site chalcocite heap leaching practices.Further,the challenges and innovations for the future development of chalcocite hydrometallurgy are presented in the end.