Objective: To directly examine the effects ofcarnosine on neuronal excitation and inhibition in rat hippocampus in vivo. Methods: Artificial cerebrospinal fluid with carnosine was directly administrated over the exp...Objective: To directly examine the effects ofcarnosine on neuronal excitation and inhibition in rat hippocampus in vivo. Methods: Artificial cerebrospinal fluid with carnosine was directly administrated over the exposed rat hippocampus. The changes of neuron activity in the CA1 region of hippocampus were evaluated by orthodromically- and antidromically-evoked potentials, as well as paired-pulse stimulation paradigm. Results: In both orthodromic and antidromic response potentials, carnosine transformed population spikes (PSs) with single spike into epileptiform multiple spikes. In addition, similar to the effect of 7-aminobutyric acidA (GABAA) antagonist picrotoxin, camosine decreased paired-pulse stimulating depression significantly. However, no significant change was observed in the spontaneous field potentials during the application of carnosine. Conclusion: The results indicate a disinhibition-induced excitation effect of carnosine on the CA1 pyramidal neurons. It provides important information against the application of carnosine as a potential anticonvulsant in clinical treatment.展开更多
A highly sensitive in-situ turbidity sensor with the low power consumption was proposed and evaluated in this study. To meet the practical requirements of the in-situ detection, we have designed the light scattering p...A highly sensitive in-situ turbidity sensor with the low power consumption was proposed and evaluated in this study. To meet the practical requirements of the in-situ detection, we have designed the light scattering path, watertight mechanical structure, and ultra-weak scattering light detecting method. Experiments showed that the sensor had a sensitivity of 0.0076 FTU with the concentration range of 0 - 25 FTU and the R-square of 0.9999. The sensor could withstand the water pressure in depth of 1000m and had the low power consumption in the active mode 10.4mA, sleep mode 65 pA with a supply voltage of 8.4V. Southern China Sea buoy experiments indicated that the sensor could work well in the actual in-situ environment. In comparison with sensors of other companies, our sensor had relatively more comprehensive performance.展开更多
基金Project (Nos. 30570585 and 30770548) supported by the National Natural Science Foundation of China
文摘Objective: To directly examine the effects ofcarnosine on neuronal excitation and inhibition in rat hippocampus in vivo. Methods: Artificial cerebrospinal fluid with carnosine was directly administrated over the exposed rat hippocampus. The changes of neuron activity in the CA1 region of hippocampus were evaluated by orthodromically- and antidromically-evoked potentials, as well as paired-pulse stimulation paradigm. Results: In both orthodromic and antidromic response potentials, carnosine transformed population spikes (PSs) with single spike into epileptiform multiple spikes. In addition, similar to the effect of 7-aminobutyric acidA (GABAA) antagonist picrotoxin, camosine decreased paired-pulse stimulating depression significantly. However, no significant change was observed in the spontaneous field potentials during the application of carnosine. Conclusion: The results indicate a disinhibition-induced excitation effect of carnosine on the CA1 pyramidal neurons. It provides important information against the application of carnosine as a potential anticonvulsant in clinical treatment.
文摘A highly sensitive in-situ turbidity sensor with the low power consumption was proposed and evaluated in this study. To meet the practical requirements of the in-situ detection, we have designed the light scattering path, watertight mechanical structure, and ultra-weak scattering light detecting method. Experiments showed that the sensor had a sensitivity of 0.0076 FTU with the concentration range of 0 - 25 FTU and the R-square of 0.9999. The sensor could withstand the water pressure in depth of 1000m and had the low power consumption in the active mode 10.4mA, sleep mode 65 pA with a supply voltage of 8.4V. Southern China Sea buoy experiments indicated that the sensor could work well in the actual in-situ environment. In comparison with sensors of other companies, our sensor had relatively more comprehensive performance.