The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pol...The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pollutants removal and filtration performance. Sludge properties were analyzed through various analytical measurements. The results showed that the improved sludge aggregation ability and the evolution of microbial communities affected sludge morphology in PAC-DMBR, as evidenced by the formation of large, regularly shaped and strengthened sludge flocs. The modifications of sludge characteristics promoted the formation process and filtration flux of the dynamic membrane(DM) layer. Additionally, PAC addition did not exert very significant influence on the propagation of eukaryotes(protists and metazoans)and microbial metabolic activity. High-throughput pyrosequencing results indicated that adding PAC improved the bacterial diversity in activated sludge, as PAC addition brought about additional microenvironment in the form of biological PAC(BPAC), which promoted the enrichment of Acinetobacter(13.9%), Comamonas(2.9%), Flavobacterium(0.31%) and Pseudomonas(0.62%), all contributing to sludge flocs formation and several(such as Acinetobacter) capable of biodegrading relatively complex organics. Therefore, PAC addition could favorably modify sludge properties from various aspects and thus enhance the DMBR performance.展开更多
A two-phase anaerobic reactor fed with glucose substrate(3 g chemical oxygen demand(COD)/L) was used to investigate the effects of toxic metals on the degradation of organics and the soluble microbial product(SMP...A two-phase anaerobic reactor fed with glucose substrate(3 g chemical oxygen demand(COD)/L) was used to investigate the effects of toxic metals on the degradation of organics and the soluble microbial product(SMP) formation. Low concentrations of Ni(II)(5 and10 mg/L) promoted the acid phase, whereas high concentrations(15, 20, and 25 mg/L)exhibited an inhibitory effect on, but did not alter the fermentative method, which mainly involved the fermentation of propionic acid. The methanogenic microorganism exhibited a strong capability adapting constantly increased Ni(II) levels. The acid phase was an accumulation stage of SMP. In the absence of Ni(II), the high-molecular-weight material in the effluent SMP mainly contained polysaccharide, tryptophan, and casein. Methanogens metabolized most of the polysaccharide, the whole tryptophan content, and part of the casein, leading to the presence of humic acid and protein in effluent. After Ni(II) dosage, the protein and polysaccharide of the acid phase increased, and tryptophan changed, while casein remained stable. More protein than polysaccharide was produced, suggesting the prominent function of protein when addressing the negative effect of toxic metals. The analysis of DNA confirmed the change of bacterial activity.展开更多
In dynamic membrane bioreactors(DMBRs), a dynamic membrane(DM) forms on a support material to act as the separation membrane for solids and liquids. In this study, batch filtration tests were carried out in a DMBR usi...In dynamic membrane bioreactors(DMBRs), a dynamic membrane(DM) forms on a support material to act as the separation membrane for solids and liquids. In this study, batch filtration tests were carried out in a DMBR using nylon mesh(25 μm) as support material to filtrate sludge suspensions of variable properties from three different sources to evaluate the effects on the short-term DM formation process(within 240 min). Furthermore, the extended Derjaguin–Landau–Verwey–Overbeek(XDLVO) theory was applied to analyze the sludge adhesion and cohesion behaviors on the mesh surface to predict quantitative parameters of the short-term DM formation process(including initial formation and maturation stage). The filtration results showed that the order of the initial DM formation time(permeate turbidity <1 NTU as an indicator) was as follows: sludge with poor settleability and dewaterability < normal sludge <sludge with poor flocculability. Moreover, normal sludge(regarding settleability, dewaterability,flocculability, and extracellular polymeric substance) showed a more acceptable DM formation performance(short DM formation time, low permeate turbidity, and high permeate flux) than sludge with poor settleability, dewaterability and flocculability. The influence of sludge properties on the initial DM formation time corroborates the prediction of sludge adhesion behaviors by XDLVO theory. Additionally, the XDLVO calculation results showed that acid–based interaction, energy barrier, and secondary energy minimum were important determinants of the sludge adhesion and cohesion behaviors. Therefore, short-term DM formation process may be enhanced to achieve stable long-term DMBR operation through positive modification of the sludge properties.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51778522,and 51508450)the Program for Innovative Research Team in Shaanxi (No.IRT2013KCT-13)
文摘The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pollutants removal and filtration performance. Sludge properties were analyzed through various analytical measurements. The results showed that the improved sludge aggregation ability and the evolution of microbial communities affected sludge morphology in PAC-DMBR, as evidenced by the formation of large, regularly shaped and strengthened sludge flocs. The modifications of sludge characteristics promoted the formation process and filtration flux of the dynamic membrane(DM) layer. Additionally, PAC addition did not exert very significant influence on the propagation of eukaryotes(protists and metazoans)and microbial metabolic activity. High-throughput pyrosequencing results indicated that adding PAC improved the bacterial diversity in activated sludge, as PAC addition brought about additional microenvironment in the form of biological PAC(BPAC), which promoted the enrichment of Acinetobacter(13.9%), Comamonas(2.9%), Flavobacterium(0.31%) and Pseudomonas(0.62%), all contributing to sludge flocs formation and several(such as Acinetobacter) capable of biodegrading relatively complex organics. Therefore, PAC addition could favorably modify sludge properties from various aspects and thus enhance the DMBR performance.
基金supported by the National Natural Science Foundation of China (Nos. 51178215 and 51378251)the Jiangsu Nature Science Fund (No. BK2011032)+2 种基金Open Science Foundation of Jiangsu (No. 50808121)the National Science and Technology Major Project for Water Pollution Control and Treatment (No. 2012ZX07301-005)the 2012 Scientific Research Open Found of Jiangsu Key Laboratory of Environmental Engineering
文摘A two-phase anaerobic reactor fed with glucose substrate(3 g chemical oxygen demand(COD)/L) was used to investigate the effects of toxic metals on the degradation of organics and the soluble microbial product(SMP) formation. Low concentrations of Ni(II)(5 and10 mg/L) promoted the acid phase, whereas high concentrations(15, 20, and 25 mg/L)exhibited an inhibitory effect on, but did not alter the fermentative method, which mainly involved the fermentation of propionic acid. The methanogenic microorganism exhibited a strong capability adapting constantly increased Ni(II) levels. The acid phase was an accumulation stage of SMP. In the absence of Ni(II), the high-molecular-weight material in the effluent SMP mainly contained polysaccharide, tryptophan, and casein. Methanogens metabolized most of the polysaccharide, the whole tryptophan content, and part of the casein, leading to the presence of humic acid and protein in effluent. After Ni(II) dosage, the protein and polysaccharide of the acid phase increased, and tryptophan changed, while casein remained stable. More protein than polysaccharide was produced, suggesting the prominent function of protein when addressing the negative effect of toxic metals. The analysis of DNA confirmed the change of bacterial activity.
基金supported by the National Natural Science Foundation of China(Nos.51778522,and 51508450)the Science Foundation for Fostering Talents of Xi'an University of Architecture and Technology(No.RC1710)the Program for Innovative Research Team in Shaanxi(No.IRT2013KCT-13)
文摘In dynamic membrane bioreactors(DMBRs), a dynamic membrane(DM) forms on a support material to act as the separation membrane for solids and liquids. In this study, batch filtration tests were carried out in a DMBR using nylon mesh(25 μm) as support material to filtrate sludge suspensions of variable properties from three different sources to evaluate the effects on the short-term DM formation process(within 240 min). Furthermore, the extended Derjaguin–Landau–Verwey–Overbeek(XDLVO) theory was applied to analyze the sludge adhesion and cohesion behaviors on the mesh surface to predict quantitative parameters of the short-term DM formation process(including initial formation and maturation stage). The filtration results showed that the order of the initial DM formation time(permeate turbidity <1 NTU as an indicator) was as follows: sludge with poor settleability and dewaterability < normal sludge <sludge with poor flocculability. Moreover, normal sludge(regarding settleability, dewaterability,flocculability, and extracellular polymeric substance) showed a more acceptable DM formation performance(short DM formation time, low permeate turbidity, and high permeate flux) than sludge with poor settleability, dewaterability and flocculability. The influence of sludge properties on the initial DM formation time corroborates the prediction of sludge adhesion behaviors by XDLVO theory. Additionally, the XDLVO calculation results showed that acid–based interaction, energy barrier, and secondary energy minimum were important determinants of the sludge adhesion and cohesion behaviors. Therefore, short-term DM formation process may be enhanced to achieve stable long-term DMBR operation through positive modification of the sludge properties.