期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Design of Robotic Visual Servo Control Based on Neural Network and Genetic Algorithm 被引量:9
1
作者 Hong-Bin Wang Mian Liu 《International Journal of Automation and computing》 EI 2012年第1期24-29,共6页
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req... A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control. 展开更多
关键词 Visual servo image Jacobian back propagation (BP) neural network genetic algorithm robot control
下载PDF
Dynamics Modeling and Robust Trajectory Tracking Control for a Class of Hybrid Humanoid Arm Based on Neural Network 被引量:4
2
作者 WANG Yueling JIN Zhenlin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期355-363,共9页
In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from mo... In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control. 展开更多
关键词 hybrid humanoid arm dynamic modeling neural network adaptive control trajectory tracking
下载PDF
Adaptive Robust Control of Multi-Machine Power Systems with Control Time Delay
3
作者 Zhongqiang Wu Feng Li +1 位作者 Chunqi Du Wei Zhang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第4期48-55,共8页
The adaptive H_∞ control problem of multi-machine power system in the case of disturbances and uncertain parameters is discussed,based on a Hamiltonian model.Considered the effect of time delay during control and tra... The adaptive H_∞ control problem of multi-machine power system in the case of disturbances and uncertain parameters is discussed,based on a Hamiltonian model.Considered the effect of time delay during control and transmission,a Hamilton model with control time delay is established.Lyapunov-Krasovskii function is selected,and a controller which makes the system asymptotically stable is got.The controller not only achieves the stability control for nonlinear systems with time delay,but also has the ability to suppress the external disturbances and adaptive ability to system parameter perturbation.The simulation results show the effect of the controller. 展开更多
关键词 multi machine power systems time delay H∞ control uncertain parameters DISTURBANCE
下载PDF
Collision avoidance for a mobile robot based on radial basis function hybrid force control technique
4
作者 温淑焕 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4222-4228,共7页
Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by ... Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by hybrid force control algorithm. Since uncertainties from robot dynamics and obstacle degrade the performance of a collision avoidance task, intelligent control is used to compensate for the uncertainties. A radial basis function (RBF) neural network is used to regulate the force field of an accurate distance between a robot and an obstacle in this paper and then simulation studies are conducted to confirm that the proposed algorithm is effective. 展开更多
关键词 mobile robot collision avoidance hybrid force/position control path planning RBF neural network
下载PDF
Fuzzy PID Control of Space Manipulator for Both Ground Alignment and Space Applications 被引量:20
5
作者 Fu-Cai Liu Li-Huan Liang Juan-Juan Gao 《International Journal of Automation and computing》 EI CSCD 2014年第4期353-360,共8页
Considering gravity change from ground alignment to space applications, a fuzzy proportional-integral-differential(PID)control strategy is proposed to make the space manipulator track the desired trajectories in diffe... Considering gravity change from ground alignment to space applications, a fuzzy proportional-integral-differential(PID)control strategy is proposed to make the space manipulator track the desired trajectories in different gravity environments. The fuzzy PID controller is developed by combining the fuzzy approach with the PID control method, and the parameters of the PID controller can be adjusted on line based on the ability of the fuzzy controller. Simulations using the dynamic model of the space manipulator have shown the effectiveness of the algorithm in the trajectory tracking problem. Compared with the results of conventional PID control,the control performance of the fuzzy PID is more effective for manipulator trajectory control. 展开更多
关键词 Space manipulator trajectory tracking ground alignment space applications fuzzy proportional-integral-differential (PID) gravity environment
原文传递
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
6
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
下载PDF
Fuzzy adaptive robust control for space robot considering the effect of the gravity 被引量:14
7
作者 Qin Li Liu Fucai +1 位作者 Liang Lihuan Gao Jingfang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1562-1570,共9页
Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of g... Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified. 展开更多
关键词 Fuzzy adaptive Microgravity Robustness Space robot Trajectory tracking control
原文传递
Robust Iterative Learning Control of Single-phase Grid-connected Inverter 被引量:1
8
作者 Zhong-Qiang Wu Chun-Hua Xu Yang Yang 《International Journal of Automation and computing》 EI CSCD 2014年第4期404-411,共8页
For the single phase inductance-capacitance-inductance(LCL) grid-connected inverter in micro-grid, a kind of robust iterative learning controller is designed. Based on the output power droop characteristics of inverte... For the single phase inductance-capacitance-inductance(LCL) grid-connected inverter in micro-grid, a kind of robust iterative learning controller is designed. Based on the output power droop characteristics of inverter, the current sharing among the inverters is achieved. Iterative learning strategy is suitable for repeated tracking control and inhibiting periodic disturbance, and is designed using robust performance index, so that it has the ability to overcome the uncertainty of system parameters. Compared with the repetitive control, the robust iterative learning control can get high precision output waveform, and enhance the tracking ability for waveform, and the distortion problem of the output signal can be solved effectively. 展开更多
关键词 Inductance-capacitance-inductance (LCL) filter iterative learning robust control power droop-characteristics repetitive control
原文传递
A Measurement System for Railgun Test
9
作者 王振春 刘福才 李惠光 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第2期150-154,共5页
A measurement system was designed to measure the railgun's parameters in launching process,which includes Rogowski coil sensor for measuring rail's current,B-dot probe for obversing projectile's velocity i... A measurement system was designed to measure the railgun's parameters in launching process,which includes Rogowski coil sensor for measuring rail's current,B-dot probe for obversing projectile's velocity in bore,net target for catching muzzle velocity,signal condition circuit and high-speed data acquisition card for analyzing and storing data.Its software was also developed in WINDOWS operational environment via modularized design.The designed sensors and test software were successfully used in a practical electromagnetic railgun system to monitor the process of launching.The test results indicate that the state of launching can be intuitively observed and the parameters are accurately acquired and recorded.The software design method can shorten the development cycle,enhance the system's flexibility and provide the interface for the secondary development.The system shows great reliability.It is an effective and practical measurement platform for further research on the electromagnetic launch system. 展开更多
关键词 ELECTRONICS RAILGUN measurement system Rogowski coil B-dot probe data acquisition
下载PDF
Anti-saturation fault-tolerant adaptive torsional vibration control with fixed-time prescribed performance for rolling mill main drive system
10
作者 Shuang Liu Chen Du +1 位作者 Cong Zhang Zhen-hua Bai 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第3期660-669,共10页
An anti-saturation fault-tolerant adaptive torsional vibration control method with fixed-time prescribed performance for the rolling mill main drive system(RMMDS)was investigated,which is affected by control input sat... An anti-saturation fault-tolerant adaptive torsional vibration control method with fixed-time prescribed performance for the rolling mill main drive system(RMMDS)was investigated,which is affected by control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.First,we gave a continuously differentiable saturation function to approximate the control input saturation characteristic of the RMMDS,translating the saturation characteristic into the matched uncertainty and unknown time-varying gain in the system.Then,an RMMDS mathematical model with unmatched uncertainty and unknown time-varying gain was developed,taking into account the presence of control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.Based on the established mathematical model,an error transformation model of the roll speed tracking was constructed by the equivalent error transformation method.According to the error transformation model,a barrier Lyapunov function and a novel adaptive controller were studied to ensure that the roll speed tracking error always evolves inside a fixed-time asymmetric constraint.Finally,numerical simulations were performed in Matlab/Simulink to verify the effectiveness and superiority of the proposed control method in suppressing the RMMDS torsional vibration. 展开更多
关键词 Fixed-time prescribed performance Control input saturation Actuator fault Unknown time-varying gain Adaptive control Asymmetric constraint
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部