Charge trap density and carrier mobility of perovskite materials are the critical properties of perovskite solar cells.The space charge limited current(SCLC)method,which measures a dark current–voltage(I-V)curve of a...Charge trap density and carrier mobility of perovskite materials are the critical properties of perovskite solar cells.The space charge limited current(SCLC)method,which measures a dark current–voltage(I-V)curve of a single-carrier device has found extensive use for studying the trap density and charge carrier mobility in perovskite materials.Herein,it was found that the electron-and hole-current in organo-lead perovskite-based single-carrier device undergoes significant hysteresis under forward and reverse scanning due to the mobile ions.In addition,it was also observed that measuring history has a detrimental effect on hysteresis resulting in possible overestimation or underestimation of the extracted electrical values from the SCLC measurement.In the forward/reverse scanning process,the mobile ionic defects enhance/shield the charge in the traps due to ionic charging/discharging,thereby increasing/reducing the interface barrier and net charge in the I-V scanning,which in turn affects the determination of transport properties of the carrier.These results raise quite a few doubts over the direct application of classical SCLC measurements for the accurate characterization of intrinsic transport properties of the mixed ionicelectronic perovskite.展开更多
Recently,the coexistence of topology and superconductivity has garnered considerable attention.Specifically,the dimensionality of these materials is crucial for the realization of topological quantum computation.Howev...Recently,the coexistence of topology and superconductivity has garnered considerable attention.Specifically,the dimensionality of these materials is crucial for the realization of topological quantum computation.However,the naturally grown materials,especially with one-dimensional feature that exhibits the coexistence of topology and superconductivity,still face challenges in terms of experimental realization and scalability,which hinders the fundamental research development and the potential to revolutionize quantum computing.Here,we report the first experimental synthesis of quasi-one-dimensional InNbS_(2)nanoribbons that exhibit the coexistence of topological order and superconductivity via a chemical vapor transport method.Especially,the inplane upper critical field of InNbS_(2)nanoribbons exceeds the Pauli paramagnetic limit by more than 2.2 times,which can be attributed to the enhanced spin-orbit coupling and the weakened interlayer interaction between the NbS_(2)layers induced by the insertion of In atoms,making InNbS_(2)exhibit spin-momentum locking similar to that of monolayer NbS_(2).Moreover,for the first time,we report the superconducting diode effect in a quasi-one-dimensional superconductor system without any inherent geometric imperfections.The measured maximum efficiency is manifested as 14%,observed atμ0H≈±60 mT,and we propose that the superconducting diode effect can potentially be attributed to the presence of the nontrivial topological band.Our work provides a platform for studying exotic phenomena in condensed matter physics and potential applications in quantum computing and quantum information processing.展开更多
Wound management is a crucial measure for skin wound healing and is significantly important to maintaining the integrity of skins and their functions.Electrical stimulation at the wound site is a compelling strategy f...Wound management is a crucial measure for skin wound healing and is significantly important to maintaining the integrity of skins and their functions.Electrical stimulation at the wound site is a compelling strategy for skin wound repair.However,there has been an urgent need for wearable and point-of-care electrical stimulation devices that have self-adhesive and mechanical properties comparable to wound tissue.Herein,we develop a bioinspired hybrid patch with self-adhesive and piezoelectric nanogenerator(HPSP)for promoting skin wound healing,which is composed of a mussel-inspired hydrogel matrix and a piezoelectric nanogenerator based on aligned electrospun poly(vinylidene fluoride)nanofibers.The device with optimized modulus and permeability for skin wear can self-adhere to the wound site and locally produce a dynamic voltage caused by motion.We show that the HPSP not only promotes fibroblast proliferation and migration in vitro,but also effectively facilitates the collagen deposition,angiogenesis,and re-epithelialization in vivo with the increased expressions of crucial growth factors.The HPSP reduces the wound closure time of full-thickness skin defects by about 1/3,greatly accelerating the healing process.This patch can serve as wearable and real-time electrical stimulation devices,potentially useful in clinical applications of skin wound healing.展开更多
With potential applications in various fields, gold related catalysts have received intensive attentions. In the past decade, mechanisms of gold catalysis for low-temperature CO oxidation, NOx oxidation/reduction, sel...With potential applications in various fields, gold related catalysts have received intensive attentions. In the past decade, mechanisms of gold catalysis for low-temperature CO oxidation, NOx oxidation/reduction, selective oxidation of alcohols have been investigated both experimentally and theoretically based on model catalysts using free or supported gold nanoparticles and single crystal gold surfaces. In this short review, we summarize recent theoretical studies on molecular oxygen activation process, water or hydroxyl involved oxidation reaction, and also the effect of local structure on the reactivity and selectivity.展开更多
Introducing defects into graphene has been widely utilized to realize the negative magnetoresistanee(MR)effect in graphene.However,the reported graphene negative MR exhibits only^10%under 10 T at room temperature to d...Introducing defects into graphene has been widely utilized to realize the negative magnetoresistanee(MR)effect in graphene.However,the reported graphene negative MR exhibits only^10%under 10 T at room temperature to date,which extremely limits the resolution of future spintronics devices.Moreover,intentional defect introduction can also cause unintentional degradation in graphene's intrinsic properties.In this paper,we report a magnetic logic inverter based on a crossed structure of defect-free graphene,resulting in a substantial gain of 4.81 mV/T while exhibiting room temperature operation.This crossed structure of graphene shows large unsaturated room temperature negative MR with an enhancement of up to 1,000%at 9 T.A transition behavior between negative and positive MR is observed in this crossed structure and the transition temperature can be tuned by a ratio of the conductivity between in-plane and out-of-plane transport.Our results open an intriguing path for future two-dimensional spintronics device applications.展开更多
Chiral structures not only exist in nature widely,they also emerge in artificial systems,attracting myriad attentions due to their excellent mechanical,optical,electrical,and magnetic properties.Self-assembly of chira...Chiral structures not only exist in nature widely,they also emerge in artificial systems,attracting myriad attentions due to their excellent mechanical,optical,electrical,and magnetic properties.Self-assembly of chiral block copolymers(BCPs*),where at least one block consists of chiral centers,represents a facile strategy to form helical/spiral/network structures with a controlled chirality.Usually,morphological chirality of BCP*assemblies was closely associated with molecular and conformational chirality of the chiral block.Generally,chiral assemblies arose from molecular chirality of BCPs*,transferring up in the assembly process and dictated the chirality at a higher hierarchical level.In contrast,notwithstanding similar assemblies could be observed from achiral BCPs under certain conditions,both left-and right-handed ones were usually observed simultaneously without a preference.Moreover,unique feature of BCPs*to access to controllable chiral assemblies affords an opportunity to prepare advanced functional materials.Herein,we dedicated a review on assembly of BCPs*into chiral assemblies in bulk/films,selective solvents,and confined spaces.The chiral transfer process in these assembly scenarios were discussed and highlighted as a key contributor to morphological chirality.Functionalities and representative applications of BCP*assemblies were also described,followed by present challenges and future prospects of BCP*self-assembly.展开更多
In most cases, layered transition metal dichalcogenides (LTMDs), containing metallic phases, show electrochemical behavior different from their semiconductor counterparts. Typically, two-dimensional layered metallic...In most cases, layered transition metal dichalcogenides (LTMDs), containing metallic phases, show electrochemical behavior different from their semiconductor counterparts. Typically, two-dimensional layered metallic 1T-MoS2 demonstrates better electrocatalytic performance for water splitting compared to its 2H counterpart. However, the characteristics of low metallic phase concentration and poor stability limit its applications in some cases. Herein, we demonstrate a simple and efficient bottom-up wet-chemistry strategy for the large-scale synthesis of nanoscopic ultrathin Mo1-xWxS2 nanosheets with enlarged interlayer spacing and high metallic phase concentration. Our characterizations, including X-ray absorption fine structure spectroscopy (XAFS), high-angle annular dark-field- scanning transmission electron microscopy (HAADF-STEM), and X-ray photoelectron spectroscopy (XPS) revealed that the metallic ultrathin ternary Mo1-xWxS2 nanosheets exhibited distorted metal-metal bonds and a tunable metallic phase concentration. As a proof of concept, this optimized catalyst, with the highest metallic phase concentration (greater than 90%), achieved a low overpotential of about -155 mV at a current density of -10 ma/cm^2, a small Tafel slope of 67 mV/dec, and an increased turnover frequency (TOF) of 1.3 H2 per second at an overpotential of -300 mV (vs. reversible hydrogen electrode (RHE)), highlighting the importance of the metallic phase. More importantly, this study can lead to a facile solvothermal route to prepare stable and high-metallic- phase-concentration transition-metal-based two-dimensional materials for future applications.展开更多
Recently,two dimensional transition metal dichalcogenides MX_2(M = Mo,W,etc; X = S,Se,Te) have ignited immense interests because of their unique structural and physical properties for the potential applications in the...Recently,two dimensional transition metal dichalcogenides MX_2(M = Mo,W,etc; X = S,Se,Te) have ignited immense interests because of their unique structural and physical properties for the potential applications in the nano-optoelectronics,valley-spintronics etc. In terms of the structural compatibility and van der Waals interaction,two dimensional(2D) MX_2 layers can be fabricated into various lateral and vertical hetero-structures. The atomically-thin hetero-structures comprising different layered MX_2 provide a new platform for exploring fundamental physics and device technologies with unprecedented phenomenon and extraordinary functionalities. In this review,we report the recent progress about the fabrication,properties and applications of 2D hetero-structures based on transition metal dichalcogenides.展开更多
Recently discovered magnetic van der Waals(vdW)materials provide an ideal platform to explore low-dimensional magnetism and spin transport.Its vdW interaction nature opens up unprecedented opportunities to build verti...Recently discovered magnetic van der Waals(vdW)materials provide an ideal platform to explore low-dimensional magnetism and spin transport.Its vdW interaction nature opens up unprecedented opportunities to build vertically stacked heterostructures with novel properties and functionalities.By engineering the planar structure as an alternative degree of freedom,herein we demonstrate an antisymmetric magnetoresistance(MR)in a vdW Fe_(3)GeTe_(2)flake with a step terrace that breaks the planar symmetry.This antisymmetric MR originates from a sign change of the anomalous Hall effect and the continuity of the current transport near the boundary of magnetic domains at the step edge.A repeatable domain wall due to the unsynchronized magnetization switching is responsible for this sign change.Such interpretation is supported by the observation of field-dependent domain switching,and the step thickness,temperature,and magnetic field orientation dependent MR.This work opens up new opportunities to encode magnetic information by controlling the planar domain structures in vdW magnets.展开更多
基金supported in part by the National Natural Science Foundation of China(6200406821607041+4 种基金12147219)the Zhejiang Provincial Natural Science Foundation of China(Y20F040001)the Natural Science Foundation of Huzhou City,China(2019YZ02)the Syracuse University Startup Fundthe U.S.-Egypt Science and Technology(S&T)Joint Fund。
文摘Charge trap density and carrier mobility of perovskite materials are the critical properties of perovskite solar cells.The space charge limited current(SCLC)method,which measures a dark current–voltage(I-V)curve of a single-carrier device has found extensive use for studying the trap density and charge carrier mobility in perovskite materials.Herein,it was found that the electron-and hole-current in organo-lead perovskite-based single-carrier device undergoes significant hysteresis under forward and reverse scanning due to the mobile ions.In addition,it was also observed that measuring history has a detrimental effect on hysteresis resulting in possible overestimation or underestimation of the extracted electrical values from the SCLC measurement.In the forward/reverse scanning process,the mobile ionic defects enhance/shield the charge in the traps due to ionic charging/discharging,thereby increasing/reducing the interface barrier and net charge in the I-V scanning,which in turn affects the determination of transport properties of the carrier.These results raise quite a few doubts over the direct application of classical SCLC measurements for the accurate characterization of intrinsic transport properties of the mixed ionicelectronic perovskite.
基金supported by the National Natural Science Foundation of China (22073087, 12147105 and 22321001)the National Natural Science Foundation for Distinguished Young Scholars (22225301)+4 种基金Anhui Provincial Natural Science Foundation (2308085QB51)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0450101)the Fundamental Research Funds for the Central Universities (20720220007)the support from the Super Computer Centre of University of Science and Technology of ChinaSupercomputing Center of Chinese Academy of Sciences。
基金supported by the Innovation Program for Quantum Science and Technology(2021ZD0302800)the National Natural Science Foundation of China(11904350,12174362)+3 种基金Anhui Provincial Natural Science Foundation(2008085QA30)Shenzhen Science and Technology Program(KQTD20190929173815000)Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08C044)the National Synchrotron Radiation Laboratory(KY2060000177).
基金supported by Innovation Program for Quantum Science and Technology(No.2021ZD0302800)the National Natural Science Foundation of China(Nos.52373309 and 12374177)+1 种基金University of Macao Start-up research grant(No.SRG2023-00057-IAPME)National Synchrotron Radiation Laboratory(No.KY2060000177).
文摘Recently,the coexistence of topology and superconductivity has garnered considerable attention.Specifically,the dimensionality of these materials is crucial for the realization of topological quantum computation.However,the naturally grown materials,especially with one-dimensional feature that exhibits the coexistence of topology and superconductivity,still face challenges in terms of experimental realization and scalability,which hinders the fundamental research development and the potential to revolutionize quantum computing.Here,we report the first experimental synthesis of quasi-one-dimensional InNbS_(2)nanoribbons that exhibit the coexistence of topological order and superconductivity via a chemical vapor transport method.Especially,the inplane upper critical field of InNbS_(2)nanoribbons exceeds the Pauli paramagnetic limit by more than 2.2 times,which can be attributed to the enhanced spin-orbit coupling and the weakened interlayer interaction between the NbS_(2)layers induced by the insertion of In atoms,making InNbS_(2)exhibit spin-momentum locking similar to that of monolayer NbS_(2).Moreover,for the first time,we report the superconducting diode effect in a quasi-one-dimensional superconductor system without any inherent geometric imperfections.The measured maximum efficiency is manifested as 14%,observed atμ0H≈±60 mT,and we propose that the superconducting diode effect can potentially be attributed to the presence of the nontrivial topological band.Our work provides a platform for studying exotic phenomena in condensed matter physics and potential applications in quantum computing and quantum information processing.
基金We thank the funding support from the National Natural Science Foundation of China(Nos.51973075 and 51525302)Program for HUST Academic Frontier Youth Team(2015-01)The authors thank HUST Analytical and Testing Center for their supports on the facilities.
文摘Wound management is a crucial measure for skin wound healing and is significantly important to maintaining the integrity of skins and their functions.Electrical stimulation at the wound site is a compelling strategy for skin wound repair.However,there has been an urgent need for wearable and point-of-care electrical stimulation devices that have self-adhesive and mechanical properties comparable to wound tissue.Herein,we develop a bioinspired hybrid patch with self-adhesive and piezoelectric nanogenerator(HPSP)for promoting skin wound healing,which is composed of a mussel-inspired hydrogel matrix and a piezoelectric nanogenerator based on aligned electrospun poly(vinylidene fluoride)nanofibers.The device with optimized modulus and permeability for skin wear can self-adhere to the wound site and locally produce a dynamic voltage caused by motion.We show that the HPSP not only promotes fibroblast proliferation and migration in vitro,but also effectively facilitates the collagen deposition,angiogenesis,and re-epithelialization in vivo with the increased expressions of crucial growth factors.The HPSP reduces the wound closure time of full-thickness skin defects by about 1/3,greatly accelerating the healing process.This patch can serve as wearable and real-time electrical stimulation devices,potentially useful in clinical applications of skin wound healing.
基金financially supported by the National Natural Science Foundation of China(21103156,21233007)the National Basic Research Program of China(2013CB933104,2010CB923301)+3 种基金MOE Fundamental Research Funds for the Central Universities,General Financial Grant from the China Postdoctoral Science Foundation(2012M510159)the USTC-HP HPC projectthe USTC-Lenovo 1800 projectShanghai Supercomputer Center
文摘With potential applications in various fields, gold related catalysts have received intensive attentions. In the past decade, mechanisms of gold catalysis for low-temperature CO oxidation, NOx oxidation/reduction, selective oxidation of alcohols have been investigated both experimentally and theoretically based on model catalysts using free or supported gold nanoparticles and single crystal gold surfaces. In this short review, we summarize recent theoretical studies on molecular oxygen activation process, water or hydroxyl involved oxidation reaction, and also the effect of local structure on the reactivity and selectivity.
基金This work was supported by the National Natural Science Foundation Committee of the China Academy of Engineering Physics(NSAF)(No.U1630108)the joint fund of the National Key Research and Development Program of China(No.2017YFA0402902)+1 种基金the National Natural Science Foundation of China(No.11434009)This research was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
文摘Introducing defects into graphene has been widely utilized to realize the negative magnetoresistanee(MR)effect in graphene.However,the reported graphene negative MR exhibits only^10%under 10 T at room temperature to date,which extremely limits the resolution of future spintronics devices.Moreover,intentional defect introduction can also cause unintentional degradation in graphene's intrinsic properties.In this paper,we report a magnetic logic inverter based on a crossed structure of defect-free graphene,resulting in a substantial gain of 4.81 mV/T while exhibiting room temperature operation.This crossed structure of graphene shows large unsaturated room temperature negative MR with an enhancement of up to 1,000%at 9 T.A transition behavior between negative and positive MR is observed in this crossed structure and the transition temperature can be tuned by a ratio of the conductivity between in-plane and out-of-plane transport.Our results open an intriguing path for future two-dimensional spintronics device applications.
基金National Natural Science Foundation of China,Grant/Award Number:51903098Fundamental Research Funds for the Central Universities,Grant/Award Number:2019kfyXJJS077。
文摘Chiral structures not only exist in nature widely,they also emerge in artificial systems,attracting myriad attentions due to their excellent mechanical,optical,electrical,and magnetic properties.Self-assembly of chiral block copolymers(BCPs*),where at least one block consists of chiral centers,represents a facile strategy to form helical/spiral/network structures with a controlled chirality.Usually,morphological chirality of BCP*assemblies was closely associated with molecular and conformational chirality of the chiral block.Generally,chiral assemblies arose from molecular chirality of BCPs*,transferring up in the assembly process and dictated the chirality at a higher hierarchical level.In contrast,notwithstanding similar assemblies could be observed from achiral BCPs under certain conditions,both left-and right-handed ones were usually observed simultaneously without a preference.Moreover,unique feature of BCPs*to access to controllable chiral assemblies affords an opportunity to prepare advanced functional materials.Herein,we dedicated a review on assembly of BCPs*into chiral assemblies in bulk/films,selective solvents,and confined spaces.The chiral transfer process in these assembly scenarios were discussed and highlighted as a key contributor to morphological chirality.Functionalities and representative applications of BCP*assemblies were also described,followed by present challenges and future prospects of BCP*self-assembly.
基金financially supported by the National Key R&D Program on Nano Science & Technology of the MOST (2017YFA0207301)the National Natural Science Foundation of China (21925110,21890751,91745113,12147105,22275205,and 22005284)+9 种基金the National Program for Support of Top-notch Young Professionals,the Fundamental Research Funds for the Central Universities (WK2060190084)the Youth Innovation Promotion Association CAS (2018500),the National Postdoctoral Program for Innovative Talents (BX20190307,BX20190308)the Major Program of Development Foundation of Hefei Centre for Physical Science and Technology (2016FXZY001)the Users with Excellence Project of Hefei Science Centre CAS (2018HSC-UE002)the CAS Project for Young Scientists in Basic Research (YSBR-070)the support from the beamline 1W1B of Beijing Synchrotron Radiation Facility (BSRF,Beijing,China)beamline BL12B-a of the National Synchrotron Radiation Laboratory (NSRL,Hefei,China)the Cryo-EM Centre at the University of Science and Technology of China for the EM facility supportpartially carried out at the USTC Centre for Micro and Nanoscale Research and Fabricationthe support from the Super Computer Centre of USTCSCC and SCCAS
基金We acknowledge the financial support of the National Basic Research Program of China (Nos. 2014CB848900 and 2016YFA0200602), the National Natural Science Foundation of China (Nos. U1532112, 11375198, 11574280, and 21573204), CUSF (No. WK2310000053) and funds from Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education). L. S. thanks the recruitment program of global experts, the CAS Hundred Talent Program. We also thank the Shanghai synchrotron Radiation Facility (14W1, SSRF), the Beijing Synchrotron Radiation Facility (1W1B and soft-X-ray endstation, BSRF), the Hefei Synchrotron Radiation Facility (MCD and Photoemission Endstations, NSRL) and USTC Center for Micro and Nanoscale Research and Fabrication.
文摘In most cases, layered transition metal dichalcogenides (LTMDs), containing metallic phases, show electrochemical behavior different from their semiconductor counterparts. Typically, two-dimensional layered metallic 1T-MoS2 demonstrates better electrocatalytic performance for water splitting compared to its 2H counterpart. However, the characteristics of low metallic phase concentration and poor stability limit its applications in some cases. Herein, we demonstrate a simple and efficient bottom-up wet-chemistry strategy for the large-scale synthesis of nanoscopic ultrathin Mo1-xWxS2 nanosheets with enlarged interlayer spacing and high metallic phase concentration. Our characterizations, including X-ray absorption fine structure spectroscopy (XAFS), high-angle annular dark-field- scanning transmission electron microscopy (HAADF-STEM), and X-ray photoelectron spectroscopy (XPS) revealed that the metallic ultrathin ternary Mo1-xWxS2 nanosheets exhibited distorted metal-metal bonds and a tunable metallic phase concentration. As a proof of concept, this optimized catalyst, with the highest metallic phase concentration (greater than 90%), achieved a low overpotential of about -155 mV at a current density of -10 ma/cm^2, a small Tafel slope of 67 mV/dec, and an increased turnover frequency (TOF) of 1.3 H2 per second at an overpotential of -300 mV (vs. reversible hydrogen electrode (RHE)), highlighting the importance of the metallic phase. More importantly, this study can lead to a facile solvothermal route to prepare stable and high-metallic- phase-concentration transition-metal-based two-dimensional materials for future applications.
基金supported by the joint fund of the National Natural Science Foundation Committee of China Academy of Engineering Physics(U1630108)the National Natural Science Foundation of China(21373196,11434009)
文摘Recently,two dimensional transition metal dichalcogenides MX_2(M = Mo,W,etc; X = S,Se,Te) have ignited immense interests because of their unique structural and physical properties for the potential applications in the nano-optoelectronics,valley-spintronics etc. In terms of the structural compatibility and van der Waals interaction,two dimensional(2D) MX_2 layers can be fabricated into various lateral and vertical hetero-structures. The atomically-thin hetero-structures comprising different layered MX_2 provide a new platform for exploring fundamental physics and device technologies with unprecedented phenomenon and extraordinary functionalities. In this review,we report the recent progress about the fabrication,properties and applications of 2D hetero-structures based on transition metal dichalcogenides.
基金the National Key Research and Development Program of China(No.2017YFA0402902)the National Natural Science Foundation of China(No.1210041089)+1 种基金National Synchrotron Radiation Laboratory(No.KY2060000177),NJUPT-SF(No.NY220163)the US NSF(No.DMR-2005108).
文摘Recently discovered magnetic van der Waals(vdW)materials provide an ideal platform to explore low-dimensional magnetism and spin transport.Its vdW interaction nature opens up unprecedented opportunities to build vertically stacked heterostructures with novel properties and functionalities.By engineering the planar structure as an alternative degree of freedom,herein we demonstrate an antisymmetric magnetoresistance(MR)in a vdW Fe_(3)GeTe_(2)flake with a step terrace that breaks the planar symmetry.This antisymmetric MR originates from a sign change of the anomalous Hall effect and the continuity of the current transport near the boundary of magnetic domains at the step edge.A repeatable domain wall due to the unsynchronized magnetization switching is responsible for this sign change.Such interpretation is supported by the observation of field-dependent domain switching,and the step thickness,temperature,and magnetic field orientation dependent MR.This work opens up new opportunities to encode magnetic information by controlling the planar domain structures in vdW magnets.