We report a high conversion efficiency Q-switched Nd:YVO_4/KTiOAsO_4(KTA) intracavity optical parametric oscillator(IOPO) operating near 3.5 um based on direct 880 nm laser diode(LD) pumping. A maximum average idler o...We report a high conversion efficiency Q-switched Nd:YVO_4/KTiOAsO_4(KTA) intracavity optical parametric oscillator(IOPO) operating near 3.5 um based on direct 880 nm laser diode(LD) pumping. A maximum average idler output power of 2.6 W with a pulse width of about 7.9 ns is achieved under an absorbed LD power of 45.4 W at a pulse repetition rate(PRR) of 10 kHz. The maximum optical-optical conversion efficiency from LD power to OPO mid-infrared(MIR) output of 6.74% is achieved. To our knowledge, this is the highest conversion efficiency for a KTA-IOPO by exploiting a Q-switched laser as the parent fundamental pump source. The beam quality factors M^2 of the MIR beam at the full output power with a PRR of 10 kHz are within 2.12 in both the horizontal and vertical directions, indicating a near Gaussian mode.展开更多
基金the National Natural Science Foundation of China under Grant Nos 61505226 and 61535013the Fund of Chinese Academy of Sciences under Grant No 6141A01071701
文摘We report a high conversion efficiency Q-switched Nd:YVO_4/KTiOAsO_4(KTA) intracavity optical parametric oscillator(IOPO) operating near 3.5 um based on direct 880 nm laser diode(LD) pumping. A maximum average idler output power of 2.6 W with a pulse width of about 7.9 ns is achieved under an absorbed LD power of 45.4 W at a pulse repetition rate(PRR) of 10 kHz. The maximum optical-optical conversion efficiency from LD power to OPO mid-infrared(MIR) output of 6.74% is achieved. To our knowledge, this is the highest conversion efficiency for a KTA-IOPO by exploiting a Q-switched laser as the parent fundamental pump source. The beam quality factors M^2 of the MIR beam at the full output power with a PRR of 10 kHz are within 2.12 in both the horizontal and vertical directions, indicating a near Gaussian mode.