期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on seismic performance of shear walls with concrete filled steel tube columns and concealed steel trusses 被引量:3
1
作者 Cao Wanlin Zhang Jianwei +1 位作者 Dong Hongying Wang Min 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期535-546,共12页
In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a doubl... In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear wails tested. 展开更多
关键词 shear wall concrete filled steel tube (CFT) concealed steel truss seismic performance experimental research
下载PDF
Base force element method of complementary energy principle for large rotation problems 被引量:8
2
作者 Yijiang Peng Yinghua Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期507-515,共9页
Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacemen... Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM. 展开更多
关键词 Base force element method (BFEM) Complementary energy principle Lagrange multiplier method Geometrically nonlinear Large rotation
下载PDF
Work conjugate principle-constrained volume averaging technique for multiphase porous media
3
作者 ZHANG ZhiHong XU ZhaoGang +1 位作者 XU ChengShun DU XiuLi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第12期1966-1974,共9页
Volume averaging is a standard method for the development of macroscopic balance equations for modelling the thermodynamic behaviors of multiphase porous media. However, work conjugate principle which is a common prac... Volume averaging is a standard method for the development of macroscopic balance equations for modelling the thermodynamic behaviors of multiphase porous media. However, work conjugate principle which is a common practice in continuum mechanics is not emphasized by the volume averaging technique resulting in the macroscopic balance equations are not capable of comprehensively describing the kinematic behaviors of multiphase porous media due to the loss of essential macroscopic variables. This study derives the macroscopic mass and momentum balance equations for the pore fluid of a fluid-solid porous medium by use of the volume averaging technique. We show(1) if the procedure of the volume averaging is implemented in its traditional manner, only the average flux of the pore fluid described by its mass average velocity is captured;(2) if the work conjugate principle is employed to define a work-conjugate velocity for the pore fluid at the macroscale, both the average flux(described by the mass average velocity) and the dispersive flux(described by the deviation of the mass average velocity from the work-conjugate one) are reproduced. This theoretical analysis demonstrates that the work conjugate principle is an essential thermodynamic constraint to improve the volume averaging technique, in the sense that the macroscopic balance equations are required to be capable of comprehensively describing the macroscopic kinematic behaviors of multiphase porous media. 展开更多
关键词 volume averaging technique work conjugate principle work-conjugate velocity dispersive flux multiphase porous media
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部