期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Distributed Monthly Water Balance Model for Analyzing Impacts of Land Cover Change on Flow Regimes 被引量:10
1
作者 XIA Jun WANG Gang-Sheng +1 位作者 YE Ai-Zhong NIU Cun-Wen 《Pedosphere》 SCIE CAS CSCD 2005年第6期761-767,共7页
The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing tr... The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow. 展开更多
关键词 水量平衡模型 土地利用 土地覆盖变化 遥感技术
下载PDF
Estimating the minimum in-stream flow requirements via wetted perimeter method based on curvature and slope techniques 被引量:2
2
作者 LIU Suxia' MO Xingguo +4 位作者 XIA Jun LIU Changming LINZhonghui MEN Baohui JI Lina 《Journal of Geographical Sciences》 SCIE CSCD 2006年第2期242-250,共9页
Under the assumptions of triangular cross section channel and uniform stable flow, an analytical solution of the minimum ecological in-stream flow requirement (MEIFR) is deduced. Based on the analytical solution, th... Under the assumptions of triangular cross section channel and uniform stable flow, an analytical solution of the minimum ecological in-stream flow requirement (MEIFR) is deduced. Based on the analytical solution, the uncertainty of the wetted perimeter method is analyzed by comparing the two techniques for the determination of the critical point on the relationship curve between wetted perimeter, P and discharge, Q. It is clearly shown that the results of MEIFR based on curvature technique (corresponding to the maximum curvature) and slope technique (slope being 1) are significantly different. On the P-Q curve, the slope of the critical point with the maximum curvature is 0.39 and the MEIFR varied prominently with the change of the slope threshold. This indicates that if a certain value of the slope threshold is not available for slope technique, curvature technique may be a better choice. By applying the analytical solution of MEIFR in the losing rivers of the Western Route South-to-North Water Transfer Project in China, the MEIFR value via curvature technique is 2.5%-23.7% of the multi-year average annual discharge, while that for slope technique is 11%-105.7%. General conclusions would rely on the more detailed research for all kinds of cross-sections. 展开更多
关键词 uncertainty wetted perimeter minimum in-stream flow requirements analytical solution Western Routhe South-to-North Water Transfer Project in China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部