期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Effect of bipolar-plates design on corrosion,mass and heat transfer in proton-exchange membrane fuel cells and water electrolyzers:A review
1
作者 Jiuhong Zhang Xiejing Luo +2 位作者 Yingyu Ding Luqi Chang Chaofang Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1599-1616,共18页
Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar... Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science. 展开更多
关键词 bipolar-plates flow design mass and heat transfer CORROSION water electrolyzers fuel cells
下载PDF
Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting 被引量:7
2
作者 Xiao-qing Ni De-cheng Kong +5 位作者 Ying Wen Liang Zhang Wen-heng Wu Bei-bei He Lin Lu De-xiang Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第3期319-328,共10页
The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile exper... The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability. 展开更多
关键词 selective laser MELTING mechanical property corrosion resistance 316L STAINLESS steel ANISOTROPY MOLTEN POOL boundary
下载PDF
Preparation and characterization of a chitosan-based low-pH-sensitive intelligent corrosion inhibitor 被引量:3
3
作者 Yu-ning Wang Chao-fang Dong +3 位作者 Da-wei Zhang Pan-pan Ren Li Li Xiao-gang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第9期998-1004,共7页
A chitosan (CS)-based low-pH-sensitive intelligent corrosion inhibitor was prepared by loading a pH-sensitive hydrogel with benzotriazole (BTA); the pH-sensitive hydrogel was synthetized by crosslinking CS with gl... A chitosan (CS)-based low-pH-sensitive intelligent corrosion inhibitor was prepared by loading a pH-sensitive hydrogel with benzotriazole (BTA); the pH-sensitive hydrogel was synthetized by crosslinking CS with glutaraldehyde (GTA). Analysis by Fou- tier-transform inflared (FT-IR) spectroscopy showed that Schiff reactions occurred between amino and aldehyde groups. The swelling abil- ity of the hydrogel was investigated using a mass method, and it was observed to swell more in an acidic environment than in an alkaline en- vironment. The hydrogel's loading capacity of BTA was approximately 0.377 g·g ^-1, and its release speed was faster in an acidic environment than in an alkaline environment because of its swelling behavior. The corrosion inhibition ability of the intelligent inhibitor was tested by immersion and electrochemical methods. The results showed that after 4 h of immersion, the polarization resistance (Rp) value of copper with the intelligent inhibitor was approximately twice of that of copper with BTA, indicating that the intelligent inhibitor could effectively prevent copper from corroding. 展开更多
关键词 corrosion inhibitors CHITOSAN HYDROGELS SWELLING corrosion inhibition copper corrosion
下载PDF
Effect of microstructure on corrosion behavior of high strength martensite steel-A literature review 被引量:9
4
作者 Li Wang Chao-fang Dong +3 位作者 Cheng Man Ya-bo Hu Qiang Yu Xiao-gang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期754-773,共20页
The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of m... The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels.Pitting is the most common corrosion type of high strength stainless steels,which always occurs at weak area of passive film such as inclusions,carbide/intermetallic interfaces.Meanwhile,the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion.The precipitation,dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps,leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels.Yet,the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels.Finally,the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored. 展开更多
关键词 corrosion behavior high strength martensite steel MICROSTRUCTURE additive manufacturing
下载PDF
Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO_2 被引量:5
5
作者 Yong Li Min-dong Chen +3 位作者 Jian-kuan Li Long-fei Song Xin Zhang Zhi-yong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第7期779-787,共9页
This work investigated the flow-accelerated corrosion (FAC) behavior of 13Cr in a wet CO2-containing environment at different flowing gas velocities mid impinging mlgles, with the natural-gas pipeline environment si... This work investigated the flow-accelerated corrosion (FAC) behavior of 13Cr in a wet CO2-containing environment at different flowing gas velocities mid impinging mlgles, with the natural-gas pipeline environment simulated by a self-assembled impingement jet sys- tem. Surface molphology determination, electrochemical measurements, mid hydromechaziics numerical analysis were cmlied out to study the FAC behavior. The results demonstrate that pitting corrosion was the primary mode of corrosion in 13Cr stainless steel. High-flow-rate gas destroyed the passive film mid decreased the pitting potential, resulting in more serious corrosion. The corrosion degree witk various im- pact mlgles showed the following order: 90~ 〉 60~ 〉 45~. The shear force and the electrolyte from the flowing gas were concluded to be the determinm^t factors of FAC, whereas the shear force was the main factor responsible for destroying the passive film. 展开更多
关键词 flow-accelerated corrosion jet loop flowing velocity impact magle C02
下载PDF
Influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips 被引量:2
6
作者 Cheng Man Chao-fang Dong +3 位作者 Hui-bin Xue Kui Xiao Xiao-gang Li Hui-bin Qi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期769-778,共10页
The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of ox... The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-Fe OOH, Fe3O4, ?-Fe OOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate. 展开更多
关键词 strip steel hot rolling focused ion beams Raman spectroscopy oxide scale corrosion
下载PDF
Design and fabrication of bipolar plates for PEM water electrolyser 被引量:2
7
作者 Xiejing Luo Chenhao Ren +7 位作者 Jie Song Hong Luo Kui Xiao Dawei Zhang Junjie Hao Zhanfeng Deng Chaofang Dong Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期19-41,共23页
Hydrogen energy,whether in generation plants or utilization facilities,plays a decisive role in the mission to achieve net-zero greenhouse gas emissions,all to minimize pollution.The growing demand for clean energy ca... Hydrogen energy,whether in generation plants or utilization facilities,plays a decisive role in the mission to achieve net-zero greenhouse gas emissions,all to minimize pollution.The growing demand for clean energy carrier steadily accelerates the development of hydrogen production processes,and therein proton exchange membrane(PEM)water electrolysis is deemed a promising long-term strategy for hydrogen preparation and collection.This review retrospects recent developments and applications of bipolar plates(BPs)as key components in PEM fuel cells and water electrolysers.The main content includes multifaceted challenges in the R&D or fabrication of BPs and potential future trends have also been proposed.Specific details cover the BPs matrix(metallic materials and carbon composites)and the surface coating types(metal and compound coatings,carbon-based coatings,and polymer coatings),as well as the influence of flow field design for mass transport.Long-term development and feasible researches of BPs are prospected.Especially in the following aspects:(1)Structural and functional integration of components,such as material fabrication and flow field geometry optimization using 3D printing technology;(2)Introduction of environment-friendly renewable energy for hydrogen production;(3)Research on hydrogen energy reversible systems;(4)Composition optimization of surface coatings based on computational materials science and(5)systematic design expected to evolve into the next generation of BPs. 展开更多
关键词 PEM water electrolyser Bipolar plates CORROSION COATINGS Interfacial contact resistance
原文传递
Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes 被引量:27
8
作者 Decheng Kong Chaofang Dong +6 位作者 Xiaoqing Ni Liang Zhang Jizheng Yao Cheng Man Xuequn Cheng Kui Xiao Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第7期1499-1507,共9页
Irregular grains, high interfacial stresses and anisotropic properties widely exist in 3D-printed metallic materials, and this paper investigated the effects of heat treatment on the microstructural, mechanical and co... Irregular grains, high interfacial stresses and anisotropic properties widely exist in 3D-printed metallic materials, and this paper investigated the effects of heat treatment on the microstructural, mechanical and corrosion properties of 316 L stainless steel fabricated by selective laser melting. Sub-grains and low-angle boundaries exist in the as-received selective laser melted(SLMed) 316 L stainless steel. After heat treatment at 1050℃, the sub-grains and low-angle boundaries changed slightly, and the stress state and strength decreased to some extent due to the decrease of dislocation density. After heat treatment at 1200℃, the grains became uniform, and the dislocation cells vanished, which led to a sharp decline in the hardness and strength. However, the ductility was improved after recrystallization heat treatment.The passive film thickness and corrosion potential of the SLMed 316 L stainless steel decreased after heat treatment, and the pitting potential also decreased due to the accelerated transition from metastable to steady-state pitting;this accelerated transition was caused by the presence of weak passive films at the enlarged pores after heat treatment, especially for an adequate solid solution treatment. 展开更多
关键词 316L STAINLESS steel SELECTIVE LASER MELTING Heat treatment Microstructure Mechanical PROPERTY Corrosion behaviour
原文传递
Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors 被引量:16
9
作者 Zibo Pei Xuequn Cheng +4 位作者 Xiaojia Yang Qing Li Chenhan Xia Dawei Zhang Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第5期214-221,共8页
Atmospheric corrosion monitoring(ACM)sensors were employed to study the initial atmospheric corrosion of carbon steels over a one-month period in six outdoor dynamic atmospheric environments in China.Based on the~250,... Atmospheric corrosion monitoring(ACM)sensors were employed to study the initial atmospheric corrosion of carbon steels over a one-month period in six outdoor dynamic atmospheric environments in China.Based on the~250,000 corrosion data sets collected,the environmental impacts of relative humidity,temperature and rainfall on the initial corrosion behavior of carbon steels were investigated.The results showed that rainfall was the strongest environmental factor influencing the initial atmospheric corrosion rate.Relative humidity significantly influenced the corrosion of carbon steels in low-precipitation environments and non-rainfall period. 展开更多
关键词 Atmospheric corrosion Corrosion monitoring SENSORS Carbon steels
原文传递
Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature 被引量:4
10
作者 Hongchi Ma Baijie Zhao +4 位作者 Yi Fan Kui Xiao Jinbin Zhao Xuequn Cheng Xiaogang Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第4期565-578,共14页
The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling te... The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling temperature(FRT)and total rolling reduction.The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of60%with the FRT of 950℃(within recrystallization temperature T_(r)).The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance.A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite-austenite(M/A)constituents and resultant low ductility and SCC resistance.In contrast,a good combination of strength,ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860℃(within non-recrystallization temperature T_(nr)),probably because of the fine grain size and M/A constituents,as well as a high density of grain boundary network. 展开更多
关键词 High-strength low-alloy(HSLA)steel Finish rolling temperature Non-recrystallization temperature Stress corrosion cracking(SCC) Grain boundary character Martensite-austenite(m/a)constituents
原文传递
Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG 被引量:4
11
作者 Tianyi Zhang Junsheng Wu +7 位作者 Lei Jin Zhan Zhang Wan Rong Bowei Zhang Yi Wang Yedong He Wei Liu Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2630-2637,共8页
A cathodic plasma electrolytic nitriding(CPEN)treatment with a urea aqueous solution was performed on 316L stainless steel to rapidly improve its surface properties in this work.Test results show that the PEG2000 macr... A cathodic plasma electrolytic nitriding(CPEN)treatment with a urea aqueous solution was performed on 316L stainless steel to rapidly improve its surface properties in this work.Test results show that the PEG2000 macromolecules increased the nitriding energy via enhancing the ability to bond the produced gas film to the metal/electrolyte interface.The cross-sectional morphologies indicate that a thick nitrided layer was obtained when the urea concentration was 543 g I^-1,corresponding to a Vickers hardness 450 HV(0.1),which was 3.5 times larger than that of the substrate.The nitrided layer mainly contained expanded austenite(γN),oxides and iron nitrides(e.g.,Fe3O4 and FeN(0.076)).In terms of its performance,coefficient of friction(COF)of the nitride layer decreased to nearly two-thirds that of the untreated layer,and the passivation current densities of the nitrided sample in a 3.5%NaCl solution decreased by an order of magnitude compared to that of the substrate.Therefore,the approach presented herein provides an attractive way to modify the effect of CPEN in a urea aqueous solution. 展开更多
关键词 316L stainless steel Cathodic plasma electrolytic nitriding Coefficient of friction Polarization curves
原文传递
Relationship Between Microstructure and Corrosion Behavior of Cr12Ni3Co12Mo4W Ultra-High-Strength Martensitic Stainless Steel 被引量:1
12
作者 Hui-Yan Li Chao-Fang Dong +2 位作者 Kui Xiao Xiao-Gang Li Ping Zhong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第11期1064-1072,共9页
The effect of tempering temperature on the microstructure and corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel was investigated using transmission electron microscopy, atomic force... The effect of tempering temperature on the microstructure and corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel was investigated using transmission electron microscopy, atomic force microscopy, X-ray diffraction, and electrochemical tests. The microstructures of the ultra-high-strength martensitic stainless steel consisted of some retained austenite and lath/plant martensite with the carbides distributed within the matrix and at the grain boundaries. Tempering of the steel for 4 h at various temperatures resulted in various carbide grain sizes and different amounts of the retained austenite. The results showed that larger carbide grains led to diminished corrosion resistance, whereas larger amounts of the retained austenite resulted in improved corrosion resistance. The steels exhibited good corrosion resistance in 0.017 mol/L NaCl solution and exhibited pitting corrosion in 0.17 mol/L Na Cl solution. The martensite and prior austenite crystal boundaries dissolved in solution with pH 1. 展开更多
关键词 Heat treatment MARTENSITE Retained austenite CARBIDE Corrosion behavior
原文传递
Recrystallization effect on surface passivation of Hastelloy X alloy fabricated by laser powder bed fusion
13
作者 Xing He Li Wang +6 位作者 Decheng Kong Ruixue Li Wei Zhang Kunjie Dai Xiaoqing Ni Ketai He Chaofang Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第32期245-258,共14页
Post-heat treatment is generally adopted in the additive manufacturing field due to its alleviation of high residual stress and modification of rapid-solidified multilevel heterogeneous microstructure,and the related ... Post-heat treatment is generally adopted in the additive manufacturing field due to its alleviation of high residual stress and modification of rapid-solidified multilevel heterogeneous microstructure,and the related performance of the heat-treated counterparts calls for a systemic investigation to build a criterion of the heat treatment procedure.In this work,we focus on the heat treatment effects on the recrystallization of the Hastelloy X alloy produced by the laser powder bed fusion(LPBF)method,and the related surface passivation of the heat-treated counterparts is meticulously assessed as well.Results show that the multilevel heterostructure for LPBF Hastelloy X alloy consists of sub-micro dislocation cell substructures with Cr/Mo elemental segregation,fine columnar grains,and periodically-distributed molten pools.After heat treatment,partially and fully recrystallized structures for LPBF Hastelloy X alloys were achieved at 1100 and 1200℃for 1 h,respectively.Furthermore,the as-built LPBF Hastelloy X alloy shows superior corrosion resistance while the heat-treated one(1100℃)exhibits the worst in the borate buffer solution.The growth of passive film exhibited a highly linear correlation with the nucleation process controlled by diffusion,and high dislocation density and low angle grain boundary decreased the diffusion coefficient of cation vacancies,augmenting the nucleation sites of the passive film and enhancing its growth rate.Moreover,the micro-galvanic effect resulting from the partially recrystallized microstructure actively facilitated the formation of inhomogeneous porous passive films,leading to the worst corrosion resistance. 展开更多
关键词 Laser powder bed fusion Hastelloy X RECRYSTALLIZATION Heterogeneous microstructure Passive film
原文传递
Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting 被引量:3
14
作者 Yuchengji Chaofang Dong +1 位作者 Decheng Kong Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第11期145-155,共11页
AlSi10Mg fabricated by selective laser melting(SLM)had a unique network-like silicon-rich structure,and the mechanism for its formation was explained by molecular dynamics(MD)simulations.The effects of the silicon-ric... AlSi10Mg fabricated by selective laser melting(SLM)had a unique network-like silicon-rich structure,and the mechanism for its formation was explained by molecular dynamics(MD)simulations.The effects of the silicon-rich phase and Mg-containing structure on corrosion were studied by first-principles methods.According to the simulations,corrosion resistant materials were designed,samples with laser powers of 150 W,200 W and 250 W were fabricated.The results indicated that a local thermal gradient during laser printing caused Si segregation,and the rapid cooling rate lead to a large number of subgrains,which assisted precipitation.The difference in potential caused galvanic corrosion,and a structure with low work function in the molten pool caused pitting.The corrosion resistance of materials processed with a high laser power increased. 展开更多
关键词 AlSi10Mg Selective laser melting Atomistic simulation Material design SEGREGATION CORROSION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部