Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the s...Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the seepage of leaching solutions and the leaching efficiency of rare earth(RE)and aluminum(Al)were investigated,and the leaching kinetics,the mass transfer process,the adhesion work and the adhesion work reduction factor were analyzed to reveal its strengthening leaching mechanism.The results show that cetyltrimethylammonium bromide(CTAB)has a better strengthening effect on the leaching process than dodecyl trimethyl ammonium bromide(DTAB),sodium dodecyl sulfate(SDS),sodium oleate and oleic acid.In the presence of 0.04%CTAB in 0.2 mol/L solution,the permeability coefficient of WREOs increases from 0.945×10^(-5)to 1.640×10^(-5)cm·s^(-1),and the leaching efficiency of RE increases from 80%to 90%,confirming the promotion of surfactants on the leaching process of WREOs.Kinetic analysis shows that the leaching process conforms to the inner diffusion control model,and the leaching kinetics equations of RE and Al related to CTAB content are obtained.Mass transfer discussion shows a smaller height equivalent to theoretical plate(HETP)of RE and Al at CTAB content of 0.04%,suggesting the higher mass transfer efficiency here.According to the interfacial properties of leaching solutions,the calculated adhesion work and the adhesion work reduction factor further demonstrate the strengthening leaching effect of CTAB on the leaching process of WREOs.展开更多
The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distri...The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distribution concept were established and extend for the ethylene aromatization process,which can reduce the kinetic parameters and simplify the reaction network by comparison with the SEMK model including subtype elementary steps based on the type of carbenium ions.Further introducing deactivation parametersφinto the model and applying the linear free energy model to the deactivation experimental data,the obtained deactivation parametersφindicate that the carbon deposition precursors have the greatest impact on reducing the reaction rate of single-molecular reactions and the smallest impact on the hydrogen transfer reaction.Meanwhile,according to the change of reaction enthalpy,effect of carbenium ion structure on methylation,ethylation,cyclization and endo-βscission was investigated by introducing linear free energy concept into the SEMK model.The effect of different acid strengths on elementary steps was investigated based on the acid strength distribution model,it was found that the methylation and oligomerization reactions,the ali-βscission reaction,endo-βscission reaction and the cyclization reaction were more sensitive to strong acidity sites.The physisorption and chemisorption heat are separated from the protonation heat in the linear free energy kinetic model and the acid strength distribution kinetic model,and the absolute values of the obtained physisorption and chemisorption heat increase with the carbon number of carbenium ions.Furthermore,the parameters of the acid strength distribution kinetic model were applied to propane dehydroaromatization on H-ZSM-5 and the ethane dehydroaromatization on Zn/ZSM-5 to confirm the independence of parameters in the SEMK model with the similar reaction network.展开更多
Weathered crust elution-deposited rare earth ores(WREOs)in China are the main source of medium and heavy rare earths in the world.In order to improve the seepage and the mass transfer of traditional ammonium salt leac...Weathered crust elution-deposited rare earth ores(WREOs)in China are the main source of medium and heavy rare earths in the world.In order to improve the seepage and the mass transfer of traditional ammonium salt leaching process of WREOs,surfactants were added in the ammonium sulfate leaching solution and the ammonium chloride leaching solution.The leaching kinetics,the mass transfer process,and the adhesion work reduction factor calculated from the interfacial properties were studied to reveal the strengthening mechanism of surfactant.In the presence of the tested five surfactants,cetyl trimethyl ammonium bromide(CTAB),dodecyl trimethyl ammonium bromide(DTAB),sodium dodecyl sulfate(SDS),sodium oleate and oleic acid,the permeability of WREOs is improved,the rare earth(RE)leaching efficiency increase and the impurity aluminum(Al)leaching efficiency decrease,indicating its promotional effect on the leaching process of WREOs.Furthermore,CTAB shows a better leaching enhancement,and the optimal addition dosage is 0.4 g/L for the two ammonium salt leaching agent systems.The kinetics analysis shows the internal diffusion controls model of RE and Al leaching process,and the leaching kinetics equations of RE and Al related to CTAB concentration were obtained for the two ammonium salt leaching systems.According to the chromatographic plate theory,the mass transfer efficiency of RE increases with the CTAB concentration increasing until 0.4 g/L,which confirms that the optimal CTAB addition is 0.4 g/L.Smaller adhesion work and adhesion work reduction factor indicate more favorable permeation as well as the leaching process.展开更多
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of...Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.展开更多
Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality ...Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.展开更多
In order to strengthen the leaching procedure,the chemical processes of leaching rare earths (RE) from the weathered crust elution-deposited rare earth ore were investigated frow the viewpoints of kinetics,hydrodynami...In order to strengthen the leaching procedure,the chemical processes of leaching rare earths (RE) from the weathered crust elution-deposited rare earth ore were investigated frow the viewpoints of kinetics,hydrodynamic and mass transfer.The results show that the leaching hydrodynamics follows the Darcy law.The leaching kinetics can be described by the shrinking core model;the leaching process is controlled by diffusion of porous solid layer;and the mass transfer can be described with Van Deemter equation.This provides a theoretic basis and a scientific approach with high efficiency and optimized extraction conditions in industrial practice.展开更多
The synthesis of Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O) by the reaction of calcium chloride with sodium aluminate was investigated. Factors affecting the preparation of Friedel's salt, such as...The synthesis of Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O) by the reaction of calcium chloride with sodium aluminate was investigated. Factors affecting the preparation of Friedel's salt, such as reaction temperature, initial concentration, titration speed, aging time and molar Ca/Al ratio were studied in detail. XRD, SEM images and particle size distribution show that the reaction temperature, aging time and molar Ca/Al ratio have significant effect on the composition, crystal morphology, and average particle size of the obtained samples. In addition, the initial CaCl2 concentration and NaAlO2 titration speed do not significantly influence the morphology and particle size distribution of Friedel's salt. With the optimization of the operating conditions, the crystals can grow up to a average size of about 28 μm, showing flat hexagonal (or pseudo- hexagonal) crystal morphology. Moreover, two potential mechanisms of Friedel's salt formation including adsorption mechanism and anion-exchange mechanism were discussed. In the adsorption mechanism, Friedel's salt forms due to the adsorption of the bulk C1- ions present in the solution into the interlayers of the principal layers, [Ca2Al(OH-)6·2H2O]+, in order to balance the charge. In the anion-exchange mechanism, the freechloride ions bind with the AFro (a family of hydrated compounds found in cement) hydrates to form Friedel's salt by anion-exchange with the ions present in the interlayers of the principal layer, [Ca2Al(OH-)6. 2H2O]+- OH-.展开更多
In order to study the effect of catalysts’morphology on the electrochemical reduction of nitrogen gas,sample catalysts of NiO with four different morphologies(hollow spherical,sea urchin-shape,cubic block,and rod-lik...In order to study the effect of catalysts’morphology on the electrochemical reduction of nitrogen gas,sample catalysts of NiO with four different morphologies(hollow spherical,sea urchin-shape,cubic block,and rod-like)were prepared.Characterization of the NiO catalysts was carried out using SEM,BET,XRD and electrochemical investigation techniques.The results indicated that the nitrogen reduction reaction(NRR)is strictly dependent on the morphology of the NiO catalysts,as the hollow spherical NiO showed the best electrochemical NRR performance of NH3 yield rate(3.21μg h^-1 mg^-1 cat.,4.1910^-11 mol cm^-2 s^-1)and Faradaic efficiency(1.37%),which was higher than the yields and efficiencies of the rod-NiO(1.8μg h^-1 mg^-1 cat.,3.2410^-11 mol cm^-2 s^-1,1.17%),sea urchin-NiO(1.66μg h^-1 mg^-1 cat.,2.4410^-11 mol cm^-2 s^-1,1.08%)and cubic block-NiO(1.32μg h^-1 mg^-1 cat.,2.1410^-11 mol cm^-2 s^-1,0.81%),respectively.These results match the order of the specific surface area of the NiO samples,with hollow spherical(113.91 m^2 g^-1)>rod-NiO(55.12 m^2 g^-1)sea urchin-NiO(55.29 m^2 g^-1)>cubic block-NiO(38.57 m^2 g^-1).This correlation can be attributed to the fact that large specific surface areas can provide more active sites for electrocatalysis.This work demonstrates the effect of the morphology of the NiO catalysts on its electrochemical NRR properties,which could offer some opportunity for the preparation of new electrode materials with improved electrocatalytic properties.展开更多
Novel cobalt Fischer-Tropsch synthesis (FTS) catalysts were prepared from natural halloysite nanotubes (HNT) by double-solvent and wet- impregnation methods, and characterized by TEM, XRD, TPR and N2 adsorption-de...Novel cobalt Fischer-Tropsch synthesis (FTS) catalysts were prepared from natural halloysite nanotubes (HNT) by double-solvent and wet- impregnation methods, and characterized by TEM, XRD, TPR and N2 adsorption-desorption. Comparing with the catalyst prepared by wet- impregnation method, the catalyst prepared by double-solvent method reduces Co3O4 particle migration and agglomeration due to size-induced effect, thus showing higher catalytic activity for Fischer-Tropsch synthesis.展开更多
The discovery of aggregation induced enmission(AIE)effect provides opportunities for the rapid development of fuorescence imaging-guided photodynamic therapy(PDT).In this work,a boron dipyrromethene(BODIPY)-based phot...The discovery of aggregation induced enmission(AIE)effect provides opportunities for the rapid development of fuorescence imaging-guided photodynamic therapy(PDT).In this work,a boron dipyrromethene(BODIPY)-based photosensitizer(ET-BDP-O)with AIE characteristics was developed,in which the two linear arms of BODIPY group were linked with triphenylamine to form an electron Donor-Acceptor-Donor(D-A-D)architecture while side chain was equipped with triethylene glycol group.ET-BDP-O was able to directly self-assemble into nanoparticles(NPs)without supplement of any other matrices or stabilizers due to its amphiphilic property.The as-prepared ET-BDP-O NPs had an excellent colloid stability with the size of 125 nm.Benefiting from the AIE property,ET-BDP-O NPs could generate strong fluorescence and reactive oxygen species under light-emitting diode light rradiation(60mW/cm^(2)).After inter-nalized in cancer cells,ET-BDP-O NPs were able to emit bright red fuorescence signal for bioimaging.In addition,the cell viability assay demonstrated that the ET-BDP-O NPs exhibited excellent photocytotoxicity against cancer cells,while negligible cytotoicity under dark envi-ronment.Thus,ET-BDP-O NPs might be regarded as a promising photosensitizer for fluores-cence imaging-guided PDT in future.展开更多
The uncontrolled dendrite growth of lithium metal anodes(LMAs)caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batteries(LMBs).Const...The uncontrolled dendrite growth of lithium metal anodes(LMAs)caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batteries(LMBs).Constructing a robust artificial solid electrolyte interphase(SEI)and regulating the lithium deposition behavior is an effective strategy to address these issues.Herein,a three-dimensional(3D)lithium anode with gradient Li_(3)N has been in-situ fabricated on carbon-based framework by thermal diffusion method(denoted as CC/Li/Li_(3)N).Density functional theory(DFT)calculations reveal that Li_(3)N can effectively promote the transport of Li^(+)due to the low energy barrier of Li^(+)diffusion.As expected,the Li_(3)N-rich conformal artificial SEI film can not only effectively stabilize the interface and avoid parasitic reactions,but also facilitate fast Li^(+)transport across the SEI layer.The anode matrix with uniformly distributed Li3N can enable homogenous deposition of Li,thus preventing Li dendrite propagation.Benefiting from these merits,the CC/Li/Li_(3)N anode achieves ultralong-term cycling for>1000 h at a current density of 2 m A cm^(-2)and dendrite-free Li deposition at an ultrahigh rate of 20 m A cm^(-2).Moreover,the full cells coupled with LiFePO4cathodes show extraordinary cycling stability for>300 cycles in liquidelectrolyte-based batteries and display a high-capacity retention of 96.7%after 100 cycles in solid-state cells,demonstrating the promising prospects for the practical applications of LMBs.展开更多
Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leachin...Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.展开更多
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese...The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.展开更多
The recovery of nickel from laterite ore with sulphuric acid under the effect of microwave irradiation was studied.The experimental results indicated that the extraction rate of nickel was influenced by reaction time,...The recovery of nickel from laterite ore with sulphuric acid under the effect of microwave irradiation was studied.The experimental results indicated that the extraction rate of nickel was influenced by reaction time,sulphuric acid concentration,and temperature,especially by microwave power.The results obtained from the experiments of orthogonal arrays showed that the optimum conditions of sulphuric acid concentration,reaction time,microwave power,and temperature were 25 vol.%,1.5 h,600 W,and 90°C,respectively.Under the optimal conditions,the nickel recovery could reach approximately 90.8%,which was higher than that obtained by conventional water bath heating.Kinetic experiments showed that the leaching of nickel in a sulphuric acid medium was controlled by chemical reaction occurring on the surface of laterite ore.The apparent activation energy was 38.9 kJ/mol.Microwave heating technology is efficient,clean,and easy to control and facilitate continuous processing of materials.展开更多
The solubilization of hardly soluble aluminum phosphate (AlPO4) by specific Penicillium spp. isolated from wheat rhizospheric soils was investigated in Pikovskaya agar and liquid medium, respectively. Most of the Pe...The solubilization of hardly soluble aluminum phosphate (AlPO4) by specific Penicillium spp. isolated from wheat rhizospheric soils was investigated in Pikovskaya agar and liquid medium, respectively. Most of the Penicillium isolates except P. sirnplicissimum AP 11 and P. variabile AP 15 developed clear transparent zone around the colony margin in plate assays. Results of broth assays show that the Penicillium isolates can efficiently solubilize aluminum phosphate in Pikovskaya liquid medium, and vary in their capabilities to release soluble phosphate from aluminum phosphate. All the isolates exhibit different abilities to lower the pH and increase the titratable acidity in the broth compared to the control. HPLC analysis shows that most of the isolates except the species of P. aurantiogriseum can excrete different concentrations of organic acids, including gluconic acid, citric acid, oxalic acid, malic acid and tartaric acids, in the broth. The release of soluble phosphate by the isolate P. oxalicum AP2, which is the best solubilizer of aluminum phosphate among the isolates, is accompanied by a significant drop of pH and an obvious rise of titratable acidity during 7 d of aluminum phosphate-solubilizing experiments. The effects of temperature, initial pH, concentration of aluminum phosphate and shaking speed on aluminum phosphate solubilization by P. oxalicum AP2 were also investigated, and the maximum contents of soluble phosphate released are recorded at temperature 30 ℃, initial pH 6, aluminum phosphate concentration 20 g/L, and shaking speed 160 r/min.展开更多
The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterize...The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterized by the X-ray diffraction (XRD), surface area measurement BET, vibration sample magnetometer (VSM) and tem- perature-programmed reduction (TPR). The experimental results demonstrated that the magnetic Pd/La1-xPbxMnO3 (x = 0.4-0.5) obtain relative better catalytic activity. It can be explained by higher concentration of oxygen vacan- cies, larger amount and better mobility of lattice oxygen of their support. Furthermore, these samples possess suffi- cient saturated magnetization. Thus, Pd/La1-xPbxMnO3 (x = 0.4-0.5) may be suitable for operation in the magneti- cally stabilized bed reactor.展开更多
A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of tw...A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the sub- strate temperature Ts of 1000℃ to 1050℃ was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faeeted large crystal diamond was obtained.展开更多
A series of novel aqueous ionic liquids(NMP-FeCl_(3)-nH_(2)O)were prepared and the effects of water in the aqueous ionic liquids on desulfurization rate and selectivity of simulated FCC gasoline were investigated.The ...A series of novel aqueous ionic liquids(NMP-FeCl_(3)-nH_(2)O)were prepared and the effects of water in the aqueous ionic liquids on desulfurization rate and selectivity of simulated FCC gasoline were investigated.The results showed that adding a small amount of water into the ionic liquid NMP-FeCl_(3) could effectively improve the desulfurization rate and selectivity,and the optimal amount of water was equal to 5%-10% of NMP.Finally,the possible desulfurization mechanism activated by a small amount of water was proposed.展开更多
基金Financial supports for this work from National Natural Science Foundation of China(Nos.22078252 and 52274266)the Graduate Education Innovation Foundation of Wuhan Institute of Technology(No.CX2021463)the Young Top-notch Talent Cultivation Program of Hubei Province are greatly appreciated.
文摘Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the seepage of leaching solutions and the leaching efficiency of rare earth(RE)and aluminum(Al)were investigated,and the leaching kinetics,the mass transfer process,the adhesion work and the adhesion work reduction factor were analyzed to reveal its strengthening leaching mechanism.The results show that cetyltrimethylammonium bromide(CTAB)has a better strengthening effect on the leaching process than dodecyl trimethyl ammonium bromide(DTAB),sodium dodecyl sulfate(SDS),sodium oleate and oleic acid.In the presence of 0.04%CTAB in 0.2 mol/L solution,the permeability coefficient of WREOs increases from 0.945×10^(-5)to 1.640×10^(-5)cm·s^(-1),and the leaching efficiency of RE increases from 80%to 90%,confirming the promotion of surfactants on the leaching process of WREOs.Kinetic analysis shows that the leaching process conforms to the inner diffusion control model,and the leaching kinetics equations of RE and Al related to CTAB content are obtained.Mass transfer discussion shows a smaller height equivalent to theoretical plate(HETP)of RE and Al at CTAB content of 0.04%,suggesting the higher mass transfer efficiency here.According to the interfacial properties of leaching solutions,the calculated adhesion work and the adhesion work reduction factor further demonstrate the strengthening leaching effect of CTAB on the leaching process of WREOs.
基金supported by the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education[grant number GCP20190204]Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology(Wuhan Institute of Technology)[grant number 40201005]+1 种基金Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education[grant number LKF201908]Graduate Innovative Fund of Wuhan Institute of Technology[grant number CX2021028].
文摘The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distribution concept were established and extend for the ethylene aromatization process,which can reduce the kinetic parameters and simplify the reaction network by comparison with the SEMK model including subtype elementary steps based on the type of carbenium ions.Further introducing deactivation parametersφinto the model and applying the linear free energy model to the deactivation experimental data,the obtained deactivation parametersφindicate that the carbon deposition precursors have the greatest impact on reducing the reaction rate of single-molecular reactions and the smallest impact on the hydrogen transfer reaction.Meanwhile,according to the change of reaction enthalpy,effect of carbenium ion structure on methylation,ethylation,cyclization and endo-βscission was investigated by introducing linear free energy concept into the SEMK model.The effect of different acid strengths on elementary steps was investigated based on the acid strength distribution model,it was found that the methylation and oligomerization reactions,the ali-βscission reaction,endo-βscission reaction and the cyclization reaction were more sensitive to strong acidity sites.The physisorption and chemisorption heat are separated from the protonation heat in the linear free energy kinetic model and the acid strength distribution kinetic model,and the absolute values of the obtained physisorption and chemisorption heat increase with the carbon number of carbenium ions.Furthermore,the parameters of the acid strength distribution kinetic model were applied to propane dehydroaromatization on H-ZSM-5 and the ethane dehydroaromatization on Zn/ZSM-5 to confirm the independence of parameters in the SEMK model with the similar reaction network.
基金Project supported by the National Natural Science Foundation of China(22078252,51874212,52274266)。
文摘Weathered crust elution-deposited rare earth ores(WREOs)in China are the main source of medium and heavy rare earths in the world.In order to improve the seepage and the mass transfer of traditional ammonium salt leaching process of WREOs,surfactants were added in the ammonium sulfate leaching solution and the ammonium chloride leaching solution.The leaching kinetics,the mass transfer process,and the adhesion work reduction factor calculated from the interfacial properties were studied to reveal the strengthening mechanism of surfactant.In the presence of the tested five surfactants,cetyl trimethyl ammonium bromide(CTAB),dodecyl trimethyl ammonium bromide(DTAB),sodium dodecyl sulfate(SDS),sodium oleate and oleic acid,the permeability of WREOs is improved,the rare earth(RE)leaching efficiency increase and the impurity aluminum(Al)leaching efficiency decrease,indicating its promotional effect on the leaching process of WREOs.Furthermore,CTAB shows a better leaching enhancement,and the optimal addition dosage is 0.4 g/L for the two ammonium salt leaching agent systems.The kinetics analysis shows the internal diffusion controls model of RE and Al leaching process,and the leaching kinetics equations of RE and Al related to CTAB concentration were obtained for the two ammonium salt leaching systems.According to the chromatographic plate theory,the mass transfer efficiency of RE increases with the CTAB concentration increasing until 0.4 g/L,which confirms that the optimal CTAB addition is 0.4 g/L.Smaller adhesion work and adhesion work reduction factor indicate more favorable permeation as well as the leaching process.
基金Project(U2002215)supported by the National Natural Science Foundation of ChinaProject(CZQ23034)supported by the Fundamental Research Funds for the Central Universities,China。
基金Supported by the Opening Project of Hubei Three Gorges Laboratory (No.SK213008)the Innovation Fund of Key Laboratory of Green Chemical Process of Ministry of Education (No.GCXP202109)。
文摘Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.
基金supported by the National Natural Science Foundation of China(Grant No.31670473)the Wuhan Institute of Technology funding to Dr.Siyue Li(Grant No.21QD02).
文摘Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.
基金Projects(50664004,50474022,50574069) supported by the National Natural Science Foundation of ChinaProjects(Q959612,Q972026) supported by the Natural Science Foundation of Jiangxi Province,China
文摘In order to strengthen the leaching procedure,the chemical processes of leaching rare earths (RE) from the weathered crust elution-deposited rare earth ore were investigated frow the viewpoints of kinetics,hydrodynamic and mass transfer.The results show that the leaching hydrodynamics follows the Darcy law.The leaching kinetics can be described by the shrinking core model;the leaching process is controlled by diffusion of porous solid layer;and the mass transfer can be described with Van Deemter equation.This provides a theoretic basis and a scientific approach with high efficiency and optimized extraction conditions in industrial practice.
基金Funded by International Science&Technology Cooperation Program of China(No.2013DFB70220)the National Natural Science Foundation of China(No.21076212)the Natural Science Foundation of Guizhou Province of China(No.[2014]2003)
文摘The synthesis of Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O) by the reaction of calcium chloride with sodium aluminate was investigated. Factors affecting the preparation of Friedel's salt, such as reaction temperature, initial concentration, titration speed, aging time and molar Ca/Al ratio were studied in detail. XRD, SEM images and particle size distribution show that the reaction temperature, aging time and molar Ca/Al ratio have significant effect on the composition, crystal morphology, and average particle size of the obtained samples. In addition, the initial CaCl2 concentration and NaAlO2 titration speed do not significantly influence the morphology and particle size distribution of Friedel's salt. With the optimization of the operating conditions, the crystals can grow up to a average size of about 28 μm, showing flat hexagonal (or pseudo- hexagonal) crystal morphology. Moreover, two potential mechanisms of Friedel's salt formation including adsorption mechanism and anion-exchange mechanism were discussed. In the adsorption mechanism, Friedel's salt forms due to the adsorption of the bulk C1- ions present in the solution into the interlayers of the principal layers, [Ca2Al(OH-)6·2H2O]+, in order to balance the charge. In the anion-exchange mechanism, the freechloride ions bind with the AFro (a family of hydrated compounds found in cement) hydrates to form Friedel's salt by anion-exchange with the ions present in the interlayers of the principal layer, [Ca2Al(OH-)6. 2H2O]+- OH-.
基金The project was supported by the National Natural Science Foundation of China(NSFC,21703161).We thank Prof.Xingmao Jiang at Wuhan Institute of Technology for his assistance in collecting N2 adsorption-desorption isotherms data.
文摘In order to study the effect of catalysts’morphology on the electrochemical reduction of nitrogen gas,sample catalysts of NiO with four different morphologies(hollow spherical,sea urchin-shape,cubic block,and rod-like)were prepared.Characterization of the NiO catalysts was carried out using SEM,BET,XRD and electrochemical investigation techniques.The results indicated that the nitrogen reduction reaction(NRR)is strictly dependent on the morphology of the NiO catalysts,as the hollow spherical NiO showed the best electrochemical NRR performance of NH3 yield rate(3.21μg h^-1 mg^-1 cat.,4.1910^-11 mol cm^-2 s^-1)and Faradaic efficiency(1.37%),which was higher than the yields and efficiencies of the rod-NiO(1.8μg h^-1 mg^-1 cat.,3.2410^-11 mol cm^-2 s^-1,1.17%),sea urchin-NiO(1.66μg h^-1 mg^-1 cat.,2.4410^-11 mol cm^-2 s^-1,1.08%)and cubic block-NiO(1.32μg h^-1 mg^-1 cat.,2.1410^-11 mol cm^-2 s^-1,0.81%),respectively.These results match the order of the specific surface area of the NiO samples,with hollow spherical(113.91 m^2 g^-1)>rod-NiO(55.12 m^2 g^-1)sea urchin-NiO(55.29 m^2 g^-1)>cubic block-NiO(38.57 m^2 g^-1).This correlation can be attributed to the fact that large specific surface areas can provide more active sites for electrocatalysis.This work demonstrates the effect of the morphology of the NiO catalysts on its electrochemical NRR properties,which could offer some opportunity for the preparation of new electrode materials with improved electrocatalytic properties.
基金supported by the National Natural Science foundation of China (21073238)the National Basic Research Program of China(2011CB211704)the Special Fund for Basic Scientific Research of Central Colleges,South-Central University for Nationalities
文摘Novel cobalt Fischer-Tropsch synthesis (FTS) catalysts were prepared from natural halloysite nanotubes (HNT) by double-solvent and wet- impregnation methods, and characterized by TEM, XRD, TPR and N2 adsorption-desorption. Comparing with the catalyst prepared by wet- impregnation method, the catalyst prepared by double-solvent method reduces Co3O4 particle migration and agglomeration due to size-induced effect, thus showing higher catalytic activity for Fischer-Tropsch synthesis.
基金supported by the National Natural Science Foundation of China(Grant No.81871483)the Medical Innovation Project of Fujian Province(Grant No.2021CXA030).
文摘The discovery of aggregation induced enmission(AIE)effect provides opportunities for the rapid development of fuorescence imaging-guided photodynamic therapy(PDT).In this work,a boron dipyrromethene(BODIPY)-based photosensitizer(ET-BDP-O)with AIE characteristics was developed,in which the two linear arms of BODIPY group were linked with triphenylamine to form an electron Donor-Acceptor-Donor(D-A-D)architecture while side chain was equipped with triethylene glycol group.ET-BDP-O was able to directly self-assemble into nanoparticles(NPs)without supplement of any other matrices or stabilizers due to its amphiphilic property.The as-prepared ET-BDP-O NPs had an excellent colloid stability with the size of 125 nm.Benefiting from the AIE property,ET-BDP-O NPs could generate strong fluorescence and reactive oxygen species under light-emitting diode light rradiation(60mW/cm^(2)).After inter-nalized in cancer cells,ET-BDP-O NPs were able to emit bright red fuorescence signal for bioimaging.In addition,the cell viability assay demonstrated that the ET-BDP-O NPs exhibited excellent photocytotoxicity against cancer cells,while negligible cytotoicity under dark envi-ronment.Thus,ET-BDP-O NPs might be regarded as a promising photosensitizer for fluores-cence imaging-guided PDT in future.
基金supported by the National Natural Science Foundation of China(22078251)the National Key R&D Program of China(2021YFB2012000)+1 种基金the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education,Jianghan University(JDGD-202211)the Graduate Innovation Fund of Wuhan Institute of Technology(CX2021014)。
文摘The uncontrolled dendrite growth of lithium metal anodes(LMAs)caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batteries(LMBs).Constructing a robust artificial solid electrolyte interphase(SEI)and regulating the lithium deposition behavior is an effective strategy to address these issues.Herein,a three-dimensional(3D)lithium anode with gradient Li_(3)N has been in-situ fabricated on carbon-based framework by thermal diffusion method(denoted as CC/Li/Li_(3)N).Density functional theory(DFT)calculations reveal that Li_(3)N can effectively promote the transport of Li^(+)due to the low energy barrier of Li^(+)diffusion.As expected,the Li_(3)N-rich conformal artificial SEI film can not only effectively stabilize the interface and avoid parasitic reactions,but also facilitate fast Li^(+)transport across the SEI layer.The anode matrix with uniformly distributed Li3N can enable homogenous deposition of Li,thus preventing Li dendrite propagation.Benefiting from these merits,the CC/Li/Li_(3)N anode achieves ultralong-term cycling for>1000 h at a current density of 2 m A cm^(-2)and dendrite-free Li deposition at an ultrahigh rate of 20 m A cm^(-2).Moreover,the full cells coupled with LiFePO4cathodes show extraordinary cycling stability for>300 cycles in liquidelectrolyte-based batteries and display a high-capacity retention of 96.7%after 100 cycles in solid-state cells,demonstrating the promising prospects for the practical applications of LMBs.
基金the National Natural Science Foundation of China(Nos.52174258,92162109,52222405 and 52004184).
文摘Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.
基金supported by the National Natural Science Foundation of China(22078251)Hubei Province Key Research and Development Program(2023DJC167)the research project of Hubei Provincial Department of Education(D20191504).
文摘The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.
文摘The recovery of nickel from laterite ore with sulphuric acid under the effect of microwave irradiation was studied.The experimental results indicated that the extraction rate of nickel was influenced by reaction time,sulphuric acid concentration,and temperature,especially by microwave power.The results obtained from the experiments of orthogonal arrays showed that the optimum conditions of sulphuric acid concentration,reaction time,microwave power,and temperature were 25 vol.%,1.5 h,600 W,and 90°C,respectively.Under the optimal conditions,the nickel recovery could reach approximately 90.8%,which was higher than that obtained by conventional water bath heating.Kinetic experiments showed that the leaching of nickel in a sulphuric acid medium was controlled by chemical reaction occurring on the surface of laterite ore.The apparent activation energy was 38.9 kJ/mol.Microwave heating technology is efficient,clean,and easy to control and facilitate continuous processing of materials.
基金Project(51004078) supported by the National Natural Science Foundation of ChinaProject(NCET-11-0965) supported by the Program for New Century Excellent Talents in Universities of China+2 种基金Project(2012FFA101) supported by the National Natural Science Foundation of Hubei Province, ChinaProject(IRT0974) supported by the Program for Changjiang Scholars and Innovative Research Team in Universities of ChinaProject(2011CB411901) supported by the National Basic Research Program of China
文摘The solubilization of hardly soluble aluminum phosphate (AlPO4) by specific Penicillium spp. isolated from wheat rhizospheric soils was investigated in Pikovskaya agar and liquid medium, respectively. Most of the Penicillium isolates except P. sirnplicissimum AP 11 and P. variabile AP 15 developed clear transparent zone around the colony margin in plate assays. Results of broth assays show that the Penicillium isolates can efficiently solubilize aluminum phosphate in Pikovskaya liquid medium, and vary in their capabilities to release soluble phosphate from aluminum phosphate. All the isolates exhibit different abilities to lower the pH and increase the titratable acidity in the broth compared to the control. HPLC analysis shows that most of the isolates except the species of P. aurantiogriseum can excrete different concentrations of organic acids, including gluconic acid, citric acid, oxalic acid, malic acid and tartaric acids, in the broth. The release of soluble phosphate by the isolate P. oxalicum AP2, which is the best solubilizer of aluminum phosphate among the isolates, is accompanied by a significant drop of pH and an obvious rise of titratable acidity during 7 d of aluminum phosphate-solubilizing experiments. The effects of temperature, initial pH, concentration of aluminum phosphate and shaking speed on aluminum phosphate solubilization by P. oxalicum AP2 were also investigated, and the maximum contents of soluble phosphate released are recorded at temperature 30 ℃, initial pH 6, aluminum phosphate concentration 20 g/L, and shaking speed 160 r/min.
基金Supported by the Key Program of National Natural Science Foundation of China(20936003)the Foundation for Innovation Research Groups of the Natural Science Foundation of Hubei Province(2008CDA009)
文摘The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterized by the X-ray diffraction (XRD), surface area measurement BET, vibration sample magnetometer (VSM) and tem- perature-programmed reduction (TPR). The experimental results demonstrated that the magnetic Pd/La1-xPbxMnO3 (x = 0.4-0.5) obtain relative better catalytic activity. It can be explained by higher concentration of oxygen vacan- cies, larger amount and better mobility of lattice oxygen of their support. Furthermore, these samples possess suffi- cient saturated magnetization. Thus, Pd/La1-xPbxMnO3 (x = 0.4-0.5) may be suitable for operation in the magneti- cally stabilized bed reactor.
基金supported by the Natural Science Foundation of Hubei Province of China(2008CDB255)the Educational Commission of Hubei Province of China(No.Q20081505)the Key Laboratory for Green Chemical Process of the Ministry of Education of China (No.RGCT200801)
文摘A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the sub- strate temperature Ts of 1000℃ to 1050℃ was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faeeted large crystal diamond was obtained.
基金This work was financially supported by the science and technology guidance plan project through the China Petroleum and Chemical Industry Federation(Contract No.2014-02-01).
文摘A series of novel aqueous ionic liquids(NMP-FeCl_(3)-nH_(2)O)were prepared and the effects of water in the aqueous ionic liquids on desulfurization rate and selectivity of simulated FCC gasoline were investigated.The results showed that adding a small amount of water into the ionic liquid NMP-FeCl_(3) could effectively improve the desulfurization rate and selectivity,and the optimal amount of water was equal to 5%-10% of NMP.Finally,the possible desulfurization mechanism activated by a small amount of water was proposed.