TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology a...TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology and phase composition of specimens in various states were analyzed by atomic force microscope(AFM), scanning electron microscope(SEM) and X-ray diffractometer(XRD), respectively. The results indicate that the as-deposited TiAl-based alloys sheet has good surface quality and is composed of γ, α2 and τ phase. There is natural delamination inside the sheet, of which the microstructure is columnar crystal, and the component shows a gradient change along the normal direction of substrate. After the vacuum hot pressing treatment and subsequent homogenization treatment, the columnar crystal transforms into the coarse fully lamellar microstructure, the delamination phenomenon and τ phase disappear, α2 phase decreases obviously, and the composition tends to uniformization.展开更多
The coatings on a stainless steel substrate were conducted by laser cladding of Ni-based alloy, using a 5 kW continuous wave CO2 flow transverse laser. SEM, EDX and X-ray diffraction were used to analyze the microstru...The coatings on a stainless steel substrate were conducted by laser cladding of Ni-based alloy, using a 5 kW continuous wave CO2 flow transverse laser. SEM, EDX and X-ray diffraction were used to analyze the microstructure and constituent phases of the obtained coatings by laser cladding with direct injection of the powder into the melt pool. Solidification planar, cellular and dendrite structures were observed in Ni-based alloy coating. There exists an optimum metallurgical bond between Ni-based laser cladding layer and the base material. The high hardness of the Ni-based alloy coating is attributed to the presence of M7C3-type carbides (essentially chromium-riched carbide) dispersed in the γ(Ni,Fe) phase matrix.展开更多
The non-resonant vibrational Raman spectra of nitrogen-doped tetrahedral amorphous carbon have been calculated from first principles, including the generation of a structural model, and the calculation of vibrational ...The non-resonant vibrational Raman spectra of nitrogen-doped tetrahedral amorphous carbon have been calculated from first principles, including the generation of a structural model, and the calculation of vibrational frequencies, vibrational eigenmodes and Raman coupling tensors. The calculated Raman spectra are in good agreement with the experimental results. The broad band at around 500 cm-1 arises from mixed bonds. The T peak originates from the vibrations of sp3 carbon and the G peak comes from the stretching vibrations of sp2-type bonding of C=C and C=N. The simulation results indicate the direct contribution of N vibrations to Raman spectra.展开更多
基金Project(90405016) supported by the National Natural Science Foundation of China
文摘TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology and phase composition of specimens in various states were analyzed by atomic force microscope(AFM), scanning electron microscope(SEM) and X-ray diffractometer(XRD), respectively. The results indicate that the as-deposited TiAl-based alloys sheet has good surface quality and is composed of γ, α2 and τ phase. There is natural delamination inside the sheet, of which the microstructure is columnar crystal, and the component shows a gradient change along the normal direction of substrate. After the vacuum hot pressing treatment and subsequent homogenization treatment, the columnar crystal transforms into the coarse fully lamellar microstructure, the delamination phenomenon and τ phase disappear, α2 phase decreases obviously, and the composition tends to uniformization.
文摘The coatings on a stainless steel substrate were conducted by laser cladding of Ni-based alloy, using a 5 kW continuous wave CO2 flow transverse laser. SEM, EDX and X-ray diffraction were used to analyze the microstructure and constituent phases of the obtained coatings by laser cladding with direct injection of the powder into the melt pool. Solidification planar, cellular and dendrite structures were observed in Ni-based alloy coating. There exists an optimum metallurgical bond between Ni-based laser cladding layer and the base material. The high hardness of the Ni-based alloy coating is attributed to the presence of M7C3-type carbides (essentially chromium-riched carbide) dispersed in the γ(Ni,Fe) phase matrix.
基金Supported by the Science Creative Foundation for Distinguished Young Scholars in Harbin (Grant No. 2007RFQXG039)China Postdoctoral Science Foundation (Grant No. 20070420157)Heilongjiang Postdoctoral Financial Assistance (Grant No. LBH-Z07099)
文摘The non-resonant vibrational Raman spectra of nitrogen-doped tetrahedral amorphous carbon have been calculated from first principles, including the generation of a structural model, and the calculation of vibrational frequencies, vibrational eigenmodes and Raman coupling tensors. The calculated Raman spectra are in good agreement with the experimental results. The broad band at around 500 cm-1 arises from mixed bonds. The T peak originates from the vibrations of sp3 carbon and the G peak comes from the stretching vibrations of sp2-type bonding of C=C and C=N. The simulation results indicate the direct contribution of N vibrations to Raman spectra.