期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Defect suppression and energy level alignment in formamidinium-based perovskite solar cells
1
作者 Yi Wang Xiaobing Wang +9 位作者 Chenhui Wang Renying Cheng Lanxin Zhao Xu Wang Xuewen Zhang Jingzhi Shang Huang Zhang Lichen Zhao Yongguang Tu Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期65-72,共8页
The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase tr... The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase transition and defects-induced non-ideal interfacial recombination, which significantly induces energy loss and hinders the improvement of device performance. Herein, we employed 4-fluorophenylmethylammonium iodide(F-PMAI) to modulate surface structure and energy level alignment of the FA-based perovskite films. The superior optoelectronic films were obtained with reduced trap density, pure α-phase FAPbI_(3) and favorable energy band bending. The lifetime of photogenerated charge carriers increased from 489.3 ns to 1010.6 ns, and a more “p-type” perovskite film was obtained by the post-treatment with F-PMAI. Following this strategy, we demonstrated an improved power conversion efficiency of 22.59% for the FA-based PSCs with an open-circuit voltage loss of 399 m V. 展开更多
关键词 Perovskite solar cells Defect suppression Energy level alignment Phase transition 4-Fluorophenylmethylammonium iodide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部