Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of...Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of clay minerals and the activity difference between layered and framed clays in this research.The influence of different calcined clay content(2%,4%,6%,8%,10%)on the fluidity,compressive strength,microstructure,phase change,and hydration heat of cement-based materials were analyzed.The calcined clay improves the fluidity of cement-based materials as compared with the uncalcined group.The addition of calcined montmorillonite(CMT)improves the development of mechanical strength,and the optimal compressive strength reaches 85 MPa at 28 days with 8%CMT.However,the activity of calcined clinoptilolite zeolite(CZL)is weak with few reaction sites,which slightly reduced the mechanical strength as compared to the blank sample.The addition of CMT changes the microscopic morphology of hydration products such as C-S-H and C-A-H,leading to the formation and transformation of ettringite in the early stage.It promotes the gradual polymerization of Si-O bonds into Si-O-Si bonds simultaneously,which accelerates the early hydration process.However,CZL acts mainly as a filling function in the cementitious system.In brief,CMT as an admixture can improve the mechanical properties of cement,but CZL has little effect.This work provides a guideline for the applications of calcined clay in cement,considering the influence of clay type on workability and mechanical strength.展开更多
In this study,the workability and reaction mechanism of metakaolin(MK)based geopolymer blended with rice husk ash(RHA)and silica fume(SF)was investigated.The prepared samples were subjected to tests including compress...In this study,the workability and reaction mechanism of metakaolin(MK)based geopolymer blended with rice husk ash(RHA)and silica fume(SF)was investigated.The prepared samples were subjected to tests including compressive strength and fluidity tests.X-ray diffraction(XRD)and Scanning electron microscope(SEM)were employed to explore the phase composition and microstructure of geopolymers.The molecular bonding information of geopolymer was provided by Fourier transform infrared spectroscopy(FTIR).Meanwhile,the porosity of geopolymer was obtained by Mercury intrusion porosimeter(MIP)analysis.The high-activity RHA obtained after calcination at 600℃ was used as a supplementary cementitious material to prepare geopolymer.The properties of preventing morphology cracking and compressive strength are improved.The addition of RHA and SF changes the working performance of MK based geopolymer and provided a theoretical basis for future practical applications.Meanwhile,the high chemical activity of SF and RHA contributes to the healing of microcracks.展开更多
基金The research presented in this paper was supported by National Natural Science Foundation of China(Grant No.52272031)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan),and the Opening Fund of Guangxi Key Laboratory of New Energy and Building Energy Saving(Grant No.19-J-22-2)+3 种基金Key Research and Development Program of Hubei Province(Grant No.2020BAB065)Key Research and Development Program of Jiangxi Province(Grant No.20201BBG71011)Fundamental Research Funds for the Central Universities,CHD(Grant No.300102211506)Opening Fund of Key Laboratory of Advanced Building Materials of Anhui Province(Grant No.JZCL001KF).
文摘Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of clay minerals and the activity difference between layered and framed clays in this research.The influence of different calcined clay content(2%,4%,6%,8%,10%)on the fluidity,compressive strength,microstructure,phase change,and hydration heat of cement-based materials were analyzed.The calcined clay improves the fluidity of cement-based materials as compared with the uncalcined group.The addition of calcined montmorillonite(CMT)improves the development of mechanical strength,and the optimal compressive strength reaches 85 MPa at 28 days with 8%CMT.However,the activity of calcined clinoptilolite zeolite(CZL)is weak with few reaction sites,which slightly reduced the mechanical strength as compared to the blank sample.The addition of CMT changes the microscopic morphology of hydration products such as C-S-H and C-A-H,leading to the formation and transformation of ettringite in the early stage.It promotes the gradual polymerization of Si-O bonds into Si-O-Si bonds simultaneously,which accelerates the early hydration process.However,CZL acts mainly as a filling function in the cementitious system.In brief,CMT as an admixture can improve the mechanical properties of cement,but CZL has little effect.This work provides a guideline for the applications of calcined clay in cement,considering the influence of clay type on workability and mechanical strength.
基金The research presented in this paper was supported by Natural Science Foundation of Hubei Province(No.2020CFB575)Natural Science Foundation of Zhejiang Province(No.LY19E080003)+5 种基金the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2020ZR09)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)and the Opening Fund of Guangxi Key Laboratory of New Energy and Building Energy Saving(Grant No.19-J-22-2)Key Research and Development Program of Hubei Province(Grant No.2020BAB065)Key Research and Development Program of Jiangxi Province(Grant No.20201BBG71011)Fundamental Research Funds for the Central Universities,CHD(Grant No.300102211506)Opening Fund of Key Laboratory of Advanced Building Materials of Anhui Province(Grant No.JZCL001KF).
文摘In this study,the workability and reaction mechanism of metakaolin(MK)based geopolymer blended with rice husk ash(RHA)and silica fume(SF)was investigated.The prepared samples were subjected to tests including compressive strength and fluidity tests.X-ray diffraction(XRD)and Scanning electron microscope(SEM)were employed to explore the phase composition and microstructure of geopolymers.The molecular bonding information of geopolymer was provided by Fourier transform infrared spectroscopy(FTIR).Meanwhile,the porosity of geopolymer was obtained by Mercury intrusion porosimeter(MIP)analysis.The high-activity RHA obtained after calcination at 600℃ was used as a supplementary cementitious material to prepare geopolymer.The properties of preventing morphology cracking and compressive strength are improved.The addition of RHA and SF changes the working performance of MK based geopolymer and provided a theoretical basis for future practical applications.Meanwhile,the high chemical activity of SF and RHA contributes to the healing of microcracks.