期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Preparation and Dye Adsorption of Low-cost Polyaniline-tea Saponin Nanocomposites 被引量:1
1
作者 邹祉衿 LI Yunlong +2 位作者 MA Zhengwei JIN Yanqiao 吕秋丰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第4期546-556,共11页
Four polyaniline-tea saponin (PTS) nanocomposites were prepared by an in-situ polymerization with tea saponin (TS) as a biosurfactant,and they were used to remove organic dyes from aqueous solution.The PTS nanocomposi... Four polyaniline-tea saponin (PTS) nanocomposites were prepared by an in-situ polymerization with tea saponin (TS) as a biosurfactant,and they were used to remove organic dyes from aqueous solution.The PTS nanocomposites were characterized by using field emission scanning electron microscopy,the Fourier transform infrared spectroscopy,the Ultraviolet-visible spectroscopy,and the thermogravimetric analysis.The adsorption performances of the PTS nanocomposites for organic dyes were studied by a static adsorption method.The experimental results reveal that adsorption capacities of the PTS nanocomposites are higher than that of pure polyaniline.Especially,the PTS nanocomposites exhibit excellent adsorption performances for anionic dyes because of the electrostatic interaction between the positively charged nitrogen atoms on the PTS chains and the negatively charged sulfonate ions in the anionic dyes.According to the adsorption kinetics and thermodynamics results,the adsorption processes of PTS20 for CR and AB74 follow well with the pseudo second-order and Langmuir isotherm models.It is indicated that TS should be very useful in the preparation of PTS nanocomposite and in removal of toxic dyes from waste water. 展开更多
关键词 POLYANILINE tea saponin NANOCOMPOSITE ADSORPTION
下载PDF
金属氧化物中的氧空位:先进催化剂设计的新进展 被引量:16
2
作者 庄国鑫 陈雅文 +2 位作者 庄赞勇 于岩 余家国 《Science China Materials》 SCIE EI CSCD 2020年第11期2089-2118,共30页
高效、稳定的催化材料有望解决日益严峻的环境污染和能源危机问题.金属氧化物具有高稳定性、低成本以及高催化活性等优点,在能源转换和环境净化等领域有广阔的应用前景,已广泛应用于H2O裂解、CO2还原、固氮以及污染物的高级氧化等催化... 高效、稳定的催化材料有望解决日益严峻的环境污染和能源危机问题.金属氧化物具有高稳定性、低成本以及高催化活性等优点,在能源转换和环境净化等领域有广阔的应用前景,已广泛应用于H2O裂解、CO2还原、固氮以及污染物的高级氧化等催化领域中.氧空位作为金属氧化物中普遍存在的一种内在缺陷,被证实可显著影响甚至改变材料的物理化学性质,是调控催化剂结构和催化性能的有效手段.深入了解催化材料氧空位的调节以及氧空位对催化性能的作用机制,为设计出高效金属氧化物催化剂提供重要理论基础.本文综述了近年来调控氧空位的基本原理和控制因素,介绍了氧空位的结构与催化活性的基本关系,包括如何影响材料的光吸收、电荷分离和反应物的吸附活化等,着重介绍了氧空位的形成机制及其对金属氧化物催化特性的影响.同时,我们还对多组分催化过程中,氧空位与其他类型催化组分间的协同催化机制进行了总结.最后,本文提出了材料缺陷工程在催化领域面临的机遇和挑战. 展开更多
关键词 CO2还原 金属氧化物 催化剂设计 催化材料 氧空位 电荷分离 催化过程 材料缺陷
原文传递
A Self-growing Porous Calcium-based Adsorbent Derived from Biowaste for Efficient Wastewater Purification
3
作者 LIN Liang ZHUANG Zan-Yong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2021年第10期1328-1336,共9页
Traditional adsorbents are normally suffered from a low adsorption capacity that has a finite saturated adsorption capacity. We reported herein a hierarchical self-growing porous calcium silicate hydrate(CSH) that use... Traditional adsorbents are normally suffered from a low adsorption capacity that has a finite saturated adsorption capacity. We reported herein a hierarchical self-growing porous calcium silicate hydrate(CSH) that uses biowaste as the precursor and is highly efficient in wastewater purification. In the process of phosphorus removal, CSH can react with phosphorus in water and grow into the hydroxyapatite(HAP). The generation of HAP further increases the active sites while maintains the porous structure of pristine CSH. Subsequently, the HAP could conduct the efficient extraction of Pb^(2+) from wastewater based on the ion exchange between Ca^(2+) and Pb^(2+). Clearly, the CSH structure has self-growing structure using the pollutants as the building blocks, not only achieving high adsorption capacity for pollutants, but also maintaining the hierarchically porous structure that supports the high efficiency in the next cycling. We provide here an intriguing pathway to tackle bottleneck of the traditional adsorbents, i.e., a finite saturated adsorption capacity. 展开更多
关键词 self-growing model high adsorption capacity BIOWASTE porous materials wastewater purifications
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部