The thermodynamic data of pure Ag and Y were calculated. The phase constitution, composition of micro-region and microstructures of Ag-Y alloy after internal oxidation were investigated by X-ray diffractometry(XRD), e...The thermodynamic data of pure Ag and Y were calculated. The phase constitution, composition of micro-region and microstructures of Ag-Y alloy after internal oxidation were investigated by X-ray diffractometry(XRD), energy dispersion spectrometry(EDS) and scanning electron microscopy(SEM). The results show that the internal oxidation behavior of Ag-Y alloy is feasible from the view of thermodynamics. The upper limit of oxygen partial pressure of Ag-Y alloy oxidation is a function of temperature. Two phases (Ag and Y2O3) appear in Ag-Y alloy after the internal oxidation. The surface of Ag-Y alloy is convex because of the volume expansion of oxide in the alloy and the composition of the convex part is Ag. In Ag-Y2O3 sintered bulk Y2O3 particles are distributed inhomogeneously and conglomerated seriously, but they are dispersed uniformly in the Ag matrix after severe plastic deformation.展开更多
基金Project(2006BAE03B03) supported by the National Science and Technology Program of China
文摘The thermodynamic data of pure Ag and Y were calculated. The phase constitution, composition of micro-region and microstructures of Ag-Y alloy after internal oxidation were investigated by X-ray diffractometry(XRD), energy dispersion spectrometry(EDS) and scanning electron microscopy(SEM). The results show that the internal oxidation behavior of Ag-Y alloy is feasible from the view of thermodynamics. The upper limit of oxygen partial pressure of Ag-Y alloy oxidation is a function of temperature. Two phases (Ag and Y2O3) appear in Ag-Y alloy after the internal oxidation. The surface of Ag-Y alloy is convex because of the volume expansion of oxide in the alloy and the composition of the convex part is Ag. In Ag-Y2O3 sintered bulk Y2O3 particles are distributed inhomogeneously and conglomerated seriously, but they are dispersed uniformly in the Ag matrix after severe plastic deformation.