This paper is concerned with the active control of thermomechanical buckling of composite laminated plates using piezoelectric facesheets as actuators.The four-variable trigonometric shear deformation theory and Hamil...This paper is concerned with the active control of thermomechanical buckling of composite laminated plates using piezoelectric facesheets as actuators.The four-variable trigonometric shear deformation theory and Hamilto's principle are applied to formulate the governing equation of structural system.The temperature feedback control strategy is proposed to conduct the active control of thermal-mechanical buckling.The simulation results show that the thermo-mechanical buckling of composite laminated plates can be effectively controlled by the presented control method.With a specific control gain,the critical mechanical buckling load can remain constant at different temperatures.The effects of geometric parameters,fiber angle,stacking sequence,position of piezoelectric layer and boundary conditions on the active control of thermo-mechanical buckling are also investigated.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.12072084 and 11761131006)the Fundamental Research Funds for the Central Universities,the Ph.D.Student ResearchInnovation Fund of the Fundamental Research Funds for the Central Universities(No.3072020GIP0206).
文摘This paper is concerned with the active control of thermomechanical buckling of composite laminated plates using piezoelectric facesheets as actuators.The four-variable trigonometric shear deformation theory and Hamilto's principle are applied to formulate the governing equation of structural system.The temperature feedback control strategy is proposed to conduct the active control of thermal-mechanical buckling.The simulation results show that the thermo-mechanical buckling of composite laminated plates can be effectively controlled by the presented control method.With a specific control gain,the critical mechanical buckling load can remain constant at different temperatures.The effects of geometric parameters,fiber angle,stacking sequence,position of piezoelectric layer and boundary conditions on the active control of thermo-mechanical buckling are also investigated.