This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data f...This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes.展开更多
The origins and pathways of atmospheric aerosols in Kenya are examined in Nairobi for the three years (2015-2017) using HYSPLIT model and meteorological data. Aerosol concentrations in Kenya depended on the frequency ...The origins and pathways of atmospheric aerosols in Kenya are examined in Nairobi for the three years (2015-2017) using HYSPLIT model and meteorological data. Aerosol concentrations in Kenya depended on the frequency of the air mass from the northeastern Asian Continent and southeastern Madagascar Island. There was a direct correlation of more pollutants during dry and hot seasons (JJA) of the year. To study the reasons for the seasonal variations, the origins of the air mass flowing to Nairobi were analyzed by backward air mass trajectory analysis. Monthly variations revealed that aerosols are transported from different directions due to variation of winds flowing and peak values were during July because of the increased emissions due to higher temperature and stronger solar radiation during heating, while the lowest value found in April was probably due to rain wash.展开更多
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 42075073 and 42075077)。
文摘This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes.
文摘The origins and pathways of atmospheric aerosols in Kenya are examined in Nairobi for the three years (2015-2017) using HYSPLIT model and meteorological data. Aerosol concentrations in Kenya depended on the frequency of the air mass from the northeastern Asian Continent and southeastern Madagascar Island. There was a direct correlation of more pollutants during dry and hot seasons (JJA) of the year. To study the reasons for the seasonal variations, the origins of the air mass flowing to Nairobi were analyzed by backward air mass trajectory analysis. Monthly variations revealed that aerosols are transported from different directions due to variation of winds flowing and peak values were during July because of the increased emissions due to higher temperature and stronger solar radiation during heating, while the lowest value found in April was probably due to rain wash.