Inorganic/organic poly(methylmethacrylate-acrylic acid-divinylbenzene) iron oxide Janus magnetic nanoparticles(P(MMA-AA-DVB)/Fe3O4) with strong magnetic domains and unique surface functionalities were prepared u...Inorganic/organic poly(methylmethacrylate-acrylic acid-divinylbenzene) iron oxide Janus magnetic nanoparticles(P(MMA-AA-DVB)/Fe3O4) with strong magnetic domains and unique surface functionalities were prepared using a solvothermal process.The P(MMA-AA-DVB) nanoparticles were prepared via soapfree emulsion polymerization and used as a precursor for preparing Janus nanoparticles.The morphology and magnetic properties of the magnetic Janus nanoparticles formed were characterized using a laser particle size analyzer,transmission electron microscopy,Fourier transform infrared spectroscopy,vibrating sample magnetometry,and thermogravimetric analysis.The synthesized P(MMA-AA-DVB)/Fe3O4 magnetic Janus nanoparticles were characterized by a Janus structure and possessed a stable asymmetric morphology after being dually functionalized.The particle size,magnetic content,and magnetic domain of the P(MMA-AA-DVB)/Fe3O4 magnetic Janus nanoparticles were 200 nm,40%,and 25 emu/g,respectively.The formation mechanism of the Janus nanoparticles was also investigated,and the results revealed that the reduction of Fe3+ ions and growth of Fe3O4 took place on the surface of the P(MMA-AA-DVB) polymeric precursor particles.The size of the Janus particles could be controlled by narrowing the size distribution of the P(MMA-AA-DVB) precursor nanoparticles.展开更多
This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized ...This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized via internal phase separation triggered by evaporation of dichloromethane (DCM) from PS/PGMA/DCM- in water emulsion droplets. Then, the Janus particles were aminated and sequentially carboxylated to obtain PS/PGMA-NH2 and PS/PGMA-COOH particles. Ag+ self-assembled on the surface of PGMA hemi- sphere of the functionalized PS/PGMA particles by coordinating with amine/carboxyl. PS/Ag asymmetric hybrid particles with 7.29 wt% of Ag were obtained by reduction of Ag+, Scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy results confirmed that Ag was asymmetrically distributed on the surface of polymer particles.展开更多
The solute redistribution and phase separation of liquid ternary Co-35%Cu-32.5%Pb immiscible alloy have been investigated using glass fluxing method.A bulk undercooling of 125 K was achieved and the macrosegregation p...The solute redistribution and phase separation of liquid ternary Co-35%Cu-32.5%Pb immiscible alloy have been investigated using glass fluxing method.A bulk undercooling of 125 K was achieved and the macrosegregation pattern was characterized by a top Co-rich zone and a bottom Cu-rich zone.The average solute contents of the two separated zones decreased with the increase of undercooling,except for the solute Pb in Cu-rich zone.With the enhancement of undercooling,a morphological transition from dendrites into equaxied grains occurred to the primary(Co)phase in Co-rich zone.The solute redistribution of Cu in primary(Co)phase was found to depend upon both the undercooling and composition of Co-rich zone.Stokes migration is shown to be the main dynamic mechanism of droplet movement during liquid phase separation.展开更多
文摘Inorganic/organic poly(methylmethacrylate-acrylic acid-divinylbenzene) iron oxide Janus magnetic nanoparticles(P(MMA-AA-DVB)/Fe3O4) with strong magnetic domains and unique surface functionalities were prepared using a solvothermal process.The P(MMA-AA-DVB) nanoparticles were prepared via soapfree emulsion polymerization and used as a precursor for preparing Janus nanoparticles.The morphology and magnetic properties of the magnetic Janus nanoparticles formed were characterized using a laser particle size analyzer,transmission electron microscopy,Fourier transform infrared spectroscopy,vibrating sample magnetometry,and thermogravimetric analysis.The synthesized P(MMA-AA-DVB)/Fe3O4 magnetic Janus nanoparticles were characterized by a Janus structure and possessed a stable asymmetric morphology after being dually functionalized.The particle size,magnetic content,and magnetic domain of the P(MMA-AA-DVB)/Fe3O4 magnetic Janus nanoparticles were 200 nm,40%,and 25 emu/g,respectively.The formation mechanism of the Janus nanoparticles was also investigated,and the results revealed that the reduction of Fe3+ ions and growth of Fe3O4 took place on the surface of the P(MMA-AA-DVB) polymeric precursor particles.The size of the Janus particles could be controlled by narrowing the size distribution of the P(MMA-AA-DVB) precursor nanoparticles.
基金the funding from National Nature Science Foundation of China(Grant No.51173146)Graduate Starting Seed Fund of Northwestern Polytechnical University(Grant No.z2012158)
文摘This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized via internal phase separation triggered by evaporation of dichloromethane (DCM) from PS/PGMA/DCM- in water emulsion droplets. Then, the Janus particles were aminated and sequentially carboxylated to obtain PS/PGMA-NH2 and PS/PGMA-COOH particles. Ag+ self-assembled on the surface of PGMA hemi- sphere of the functionalized PS/PGMA particles by coordinating with amine/carboxyl. PS/Ag asymmetric hybrid particles with 7.29 wt% of Ag were obtained by reduction of Ag+, Scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy results confirmed that Ag was asymmetrically distributed on the surface of polymer particles.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51327901,50971105 and 51301138)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20126102120064)the Fundamental Research Fund of Northwestern Polytechnical University (Grant No. JC20110278)
文摘The solute redistribution and phase separation of liquid ternary Co-35%Cu-32.5%Pb immiscible alloy have been investigated using glass fluxing method.A bulk undercooling of 125 K was achieved and the macrosegregation pattern was characterized by a top Co-rich zone and a bottom Cu-rich zone.The average solute contents of the two separated zones decreased with the increase of undercooling,except for the solute Pb in Cu-rich zone.With the enhancement of undercooling,a morphological transition from dendrites into equaxied grains occurred to the primary(Co)phase in Co-rich zone.The solute redistribution of Cu in primary(Co)phase was found to depend upon both the undercooling and composition of Co-rich zone.Stokes migration is shown to be the main dynamic mechanism of droplet movement during liquid phase separation.